987 resultados para Rain gage


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La major conscienciació actual dels problemes de pol·lució que acompanyen les pèrdues de N del sòl cap a l'atmosfera ha reorientat les investigacions cap a un coneixement més profund dels processos implicats en les emissions dels compostos nitrogenats que comporten un major perjudici des d'un punt de vista ecològic així com els seus principals factors reguladors. La creixent preocupació per l'increment de la concentració atmosfèrica de N2O és deguda a les seves interaccions amb la fotoquímica atmosfèrica i el balanç de radiació de la Terra ja que intervé en la destrucció de la capa estratosfèrica d'ozó, contribueix a l'efecte hivernacle i participa de la pluja àcida. Es considera que els sòls són la principal font de N2O atmosfèric. Al voltant del 90% d'aquestes emissions són d'origen biòtic; els principals processos implicats són la desnitrificació i la nitrificació. L'emissió del N2O produït a través d'aquests dos processos es caracteritza pels diferents nivells de regulació que presenta ja que depèn de la taxa dels processos, de la proporció de N canalitzada per cada procés cap a la producció de N2O i del seu consum dins el mateix sòl el qual està relacionat amb les dificultats en el transport cap a l'atmosfera. Això comporta una gran dificultat a l'hora d'aprofundir en el coneixement de les emissions de N2O del sòl cap a l'atmosfera i de la seva regulació. El desconeixement dels nivells d'emissió de N2O i de la importància de la desnitrificació així com de la seva regulació tant en sòls agrícoles com naturals de les nostres contrades és el principal punt de partida dels objectius d'aquest treball.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O estudo realizado abriu discursão sobre a gestão de processos de ativação e recuperação e o conhecimento dos gestores desses processos relacionados com o uso das tecnologias. A análise objetivou observar a qualidade no atendimento das empresas de Telecom aos clientes da região Oeste do Pará, foi observado as estratégias empregadas por essas empresas para que seus serviços pudessem se tornar mais viáveis, certamente que o compromisso e responsabilidade dos gestores das empresas de Telecom tem sido bastante árdua, as problemáticas geográficas da região em estudo são muitas. Um dos problemas impactantes é a via de acesso da cidade mãe até as cidades vizinhas, depende de barcos, lanchas, balsas ou via terrestre; as adversidades são inúmeras e podem modificar comportamento e forma estratégica de se trabalhar nos processos analisados, inclusive em tempos de chuva a situação fica mais comprometedora aos técnicos de ativação e recuperação. Percebe que esses fatores alteram resultados estipulados pelas empresas, isso faz com que os gestores repensem e refaçam suas estratégias nos dois processos. O trabalho avaliou a estratégia usada pelos gestores de TI (Tecnologia da Informação) ou gestores geral das empresas usuárias para melhor atender sua clientela interna, e conseguir discernir as práticas dos serviços Telecom, melhorando o diálogo com os gestores Telecom, aumentando a qualidade e satisfação de seus clientes internos, tendo um equilíbrio de conhecimento nos conceitos tecnológicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite observations of convective system properties and lightning flash rate are used to investigate the ability of potential lightning parameterizations to capture both the dominant land-ocean contrast in lightning occurrence and regional differences between Africa, the Amazon and the islands of the maritime continent. As found in previous studies, the radar storm height is tightly correlated with the lightning flash rate. A roughly second order power-law fit to the mean radar echo top height above the 0C isotherm is shown to capture both regional and land-ocean contrasts in lightning occurrence and flash rate using a single set of parameters. Recent developments should soon make it possible to implement a parameterization of this kind in global models. Parameterizations based on cloud top height, convective rain rate and convective rain fraction all require the use of separate fits over land and ocean and fail to capture observed differences between continental regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate models suggest that extreme precipitation events will become more common in an anthropogenically warmed climate. However, observational limitations have hindered a direct evaluation of model-projected changes in extreme precipitation. We used satellite observations and model simulations to examine the response of tropical precipitation events to naturally driven changes in surface temperature and atmospheric moisture content. These observations reveal a distinct link between rainfall extremes and temperature, with heavy rain events increasing during warm periods and decreasing during cold periods. Furthermore, the observed amplification of rainfall extremes is found to be larger than that predicted by models, implying that projections of future changes in rainfall extremes in response to anthropogenic global warming may be underestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idealized, convection-resolving simulations of moist orographic flows are conducted to investigate the influence of temperature and moist stability on the drying ratio (DR), defined as the fraction of the impinging water mass removed as orographic precipitation. In flow past a long ridge, where most of the air rises over the barrier rather than detouring around it, DR decreases as the surface temperature (Ts) increases, even as the orographic cap cloud becomes statically unstable at higher Ts and develops embedded convection. This behaviour is explained by a few physical principles: (1) the Clausius–Clapeyron equation dictates that the normalized condensation rate decreases as the flow gets warmer, (2) the replacement of ice-phase precipitation growth with warm-rain processes decreases the efficiency by which condensate is converted to precipitation, thereby lowering precipitation efficiency, and (3) embedded convection acts more to vertically redistribute moisture than to enhance precipitation. Over an isolated mountain, the effects of (1) and (2) are counteracted by moisture deflection around the barrier, which is stronger in the colder, more stable flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows how the rainfall distribution over the UK, in the three major events on 13-15 June, 25 June and 20 July 2007, was related to troughs in the upper-level flow, and investigates the relationship of these features to a persistent large-scale flow pattern which extended around the northern hemisphere and its possible origins. Remote influences can be mediated by the propagation of large-scale atmospheric waves across the northern hemisphere and also by the origins of the air-masses that are wrapped into the developing weather systems delivering the rain to the UK. These dynamical influences are examined using analyses and forecasts produced by a range of atmospheric models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric electricity measurements were made at Lerwick Observatory in the Shetland Isles (60°09′N, 1°08′W) during most of the 20th century. The Potential Gradient (PG) was measured from 1926 to 84 and the air-earth conduction current (Jc) was measured during the final decade of the PG measurements. Daily Jc values (1978–1984) observed at 15 UT are presented here for the first time, with independently-obtained PG measurements used to select valid data. The 15 UT Jc (1978–1984) spans 0.5–9.5 pA/m2, with median 2.5 pA/m2; the columnar resistance at Lerwick is estimated as 70 PΩm2. Smoke measurements confirm the low pollution properties of the site. Analysis of the monthly variation of Lerwick Jc data shows that winter (DJF) Jc is significantly greater than the summer (JJA) Jc by 20%. The Lerwick atmospheric electricity seasonality differs from the global lightning seasonality, but Jc has a similar seasonal phasing to that observed in Nimbostratus clouds globally, suggesting a role for non-thunderstorm rain clouds in the seasonality of the global circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30-min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric-based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright (c) 2007 John Wiley & Sons, Ltd.