990 resultados para RIFTED-MARGIN
Resumo:
We analyse the variations produced on tsunami propagation and impact over a straight coastline because of the presence of a submarine canyon incised in the continental margin. For ease of calculation we assume that the shoreline and the shelf edge are parallel and that the incident wave approaches them normally. A total of 512 synthetic scenarios have been computed by combining the bathymetry of a continental margin incised by a parameterised single canyon and the incident tsunami waves. The margin bathymetry, the canyon and the tsunami waves have been generated using mathematical functions (e.g. Gaussian). Canyon parameters analysed are: (i) incision length into the continental shelf, which for a constant shelf width relates directly to the distance from the canyon head to the coast, (ii) canyon width, and (iii) canyon orientation with respect to the shoreline. Tsunami wave parameters considered are period and sign. The COMCOT tsunami model from Cornell University was applied to propagate the waves across the synthetic bathymetric surfaces. Five simulations of tsunami propagation over a non-canyoned margin were also performed for reference. The analysis of the results reveals a strong variation of tsunami arrival times and amplitudes reaching the coastline when a tsunami wave travels over a submarine canyon, with changing maximum height location and alongshore extension. In general, the presence of a submarine canyon lowers the arrival time to the shoreline but prevents wave build-up just over the canyon axis. This leads to a decrease in tsunami amplitude at the coastal stretch located just shoreward of the canyon head, which results in a lower run-up in comparison with a non-canyoned margin. Contrarily, an increased wave build-up occurs on both sides of the canyon head, generating two coastal stretches with an enhanced run-up. These aggravated or reduced tsunami effects are modified with (i) proximity of the canyon tip to the coast, amplifying the wave height, (ii) canyon width, enlarging the areas with lower and higher maximum height wave along the coastline, and (iii) canyon obliquity with respect to the shoreline and shelf edge, increasing wave height shoreward of the leeward flank of the canyon. Moreover, the presence of a submarine canyon near the coast produces a variation of wave energy along the shore, eventually resulting in edge waves shoreward of the canyon head. Edge waves subsequently spread out alongshore reaching significant amplitudes especially when coupling with tsunami secondary waves occurs. Model results have been groundtruthed using the actual bathymetry of Blanes Canyon area in the North Catalan margin. This paper underlines the effects of the presence, morphology and orientation of submarine canyons as a determining factor on tsunami propagation and impact, which could prevail over other effects deriving from coastal configuration.
Resumo:
New reconstructions of the Western Alps from late Early Jurassic till early Tertiary are proposed. These reconstructions use deep lithospheric data gathered through recent seismic surveys and tomographic studies carried out in the Alps. The present day position, under the Po plain, of the southern limit of the European plate (fig. 1), allows to define the former geometry of the Brianconnais peninsula. The Brianconnais domain is regarded as an exotic terrane formerly belonging to the European margin until Late Jurassic, then transported eastward during the drift of Iberia (fig. 5). Therefore, on a present day Western Alps cross section, a duplication of the European continental margin can be recognized (fig. 10). Stratigraphic and sedimentological data along a zone linking the Pyrenean fracture zone to the Brianconnais, can be related to a rifting event starting in Oxfordian time. This event is responsible for the Late Jurassic till mid-Cretaceous drift of Iberia opening, first the northern Atlantic, then the Gulf of Biscay. Simultaneously, the drift of the Brianconnais will open the Valais ocean and close the Piemontese ocean. The resulting oblique collision zone between the Brianconnais and the Apulian margin generates HP/LT metamorphism starting in Early Cretaceous. The eastward drift of the Brianconnais peninsula will eventually bring it in front of a more northerly segment of the former European margin. The thrusting of the Brianconnais unto that margin takes place in early Tertiary (fig. 9), following the subduction of the Valais ocean. The present nappe pile results not only from continent/continent frontal collision, but also from important lateral displacement of terranes, the most important one being the Brianconnais. The dilemma of `'en echelon'' oceanic domains in the Alps is an outcome of these translations. A solution is found when considering the opening of a Cretaceous Valais ocean across the European margin, running out eastward into the Piemontese ocean, where the drift is taken up along a former transform fault and compensated by subduction under the Apulian margin (fig. 8). In the Western Alps we are then dealing with two oceans, the Piemontese and the Valaisan and a duplicated European margin. In the Eastern Alps the single Piemontese ocean is cut by newly created oceanic crust. All these elements will be incorporated into the Penninic structural domain which does not represent a former unique paleogeographic area, it is a composite accretionary domain squeezed between Europe and Apulia.
Resumo:
PURPOSE: To examine the metastatic and survival rates, eye retention probability, and the visual outcomes of juvenile patients after proton beam radiotherapy (PBRT) for uveal melanoma (UM). DESIGN: Retrospective case-factor matched control study. PARTICIPANTS AND CONTROLS: Forty-three patients younger than 21 years treated with PBRT for UM were compared with 129 matched adult control patients. METHODS: Information on patient demographics and clinical characteristics were recorded before and after treatment from patients' files. The control group was composed of adult patients (>21 years) matched for tumor size (largest tumor diameter, ±2 mm; height, ±2 mm) and anterior margin location (iris, ciliary body, pre-equatorial or postequatorial choroid). For each juvenile patient, 3 adults were selected. MAIN OUTCOME MEASURES: Comparing outcomes of juvenile and adult patients in terms of metastatic and eye retention rates using the log-rank statistic, relative survival using the Hakulinen method, as well as their visual outcomes. RESULTS: Forty-three juvenile and 129 control cases were reviewed. The metastatic rate at 10 years was significantly lower in juvenile UM patients than in adult controls (11% vs. 34%; P <0.01), with an associated relative survival rate of 93% versus 65% (P = 0.02). Six juvenile patients (14%) demonstrated metastases. One patient underwent enucleation because of a presumed local tumor recurrence and 4 additional patients underwent enucleation because of complications (9.3%). In the adult control group, 27% (n = 35) of matched patients demonstrated metastases, there were 2 cases of local recurrence, and 16% (n = 21) underwent enucleation because of complications. A visual acuity of more than 0.10 was maintained in most cases, without any significant differences before or after treatment observed between both groups. CONCLUSIONS: After PBRT, metastatic and survival rates are significantly better for juvenile than for adult patients with UM. Clinically, juvenile and adult eyes react similarly to PBRT, with patients having a comparable eye retention probability and maintaining a useful level of vision in most cases. This is the largest case-control study of proton therapy in juvenile eyes to date and further validates PBRT as an appropriate conservative treatment for UM in patients younger than 21 years.
Resumo:
Objectives. A study is made of the dental implications of oral cancer, with a view to avoiding the complications that appear once oncological treatment is started. Patients and Methods. The study comprised a total of 22 patients diagnosed with oral cancer according to clinical and histological criteria in the Service of Maxillofacial Surgery (Dental Clinic of the University of Barcelona, Spain) during the period 1996-2005, and posteriorly treated in different hospital centers in Barcelona. Results. Of the 22 patients diagnosed with oral cancer in our Service, the present study finally analyzed the 12 subjects who reported for the dental controls. As regards the remaining 10 patients, 5 had died and 5 could not be located; these subjects were thus excluded from the analysis. All of the smokers had abandoned the habit. The most common tumor location was the lateral margin of the tongue. None of the patients visited the dentist regularly before the diagnosis of oral cancer. T1N0M0 was the most common tumor stage. Surgery was carried out in 50% of the cases, while 8.4% of the patients received radiotherapy and 41.6% underwent surgery with postoperative radiotherapy. In turn, 66.6% of the patients reported treatment sequelae such as dysgeusia, xerostomia or speech difficulties, and one patient suffered osteoradionecrosis. Forty-one percent of the patients did not undergo regular dental controls after cancer treatment. As regards oral and dental health, 16.6% presented caries, and 50% had active periodontal disease. Conclusions. Protocols are available for preventing the complications of oral cancer treatment, and thus for improving patient quality of life. However, important shortcomings in the application of such protocols on the part of the public health authorities make it difficult to reach these objectives
Resumo:
Objectives. A study is made of the dental implications of oral cancer, with a view to avoiding the complications that appear once oncological treatment is started. Patients and Methods. The study comprised a total of 22 patients diagnosed with oral cancer according to clinical and histological criteria in the Service of Maxillofacial Surgery (Dental Clinic of the University of Barcelona, Spain) during the period 1996-2005, and posteriorly treated in different hospital centers in Barcelona. Results. Of the 22 patients diagnosed with oral cancer in our Service, the present study finally analyzed the 12 subjects who reported for the dental controls. As regards the remaining 10 patients, 5 had died and 5 could not be located; these subjects were thus excluded from the analysis. All of the smokers had abandoned the habit. The most common tumor location was the lateral margin of the tongue. None of the patients visited the dentist regularly before the diagnosis of oral cancer. T1N0M0 was the most common tumor stage. Surgery was carried out in 50% of the cases, while 8.4% of the patients received radiotherapy and 41.6% underwent surgery with postoperative radiotherapy. In turn, 66.6% of the patients reported treatment sequelae such as dysgeusia, xerostomia or speech difficulties, and one patient suffered osteoradionecrosis. Forty-one percent of the patients did not undergo regular dental controls after cancer treatment. As regards oral and dental health, 16.6% presented caries, and 50% had active periodontal disease. Conclusions. Protocols are available for preventing the complications of oral cancer treatment, and thus for improving patient quality of life. However, important shortcomings in the application of such protocols on the part of the public health authorities make it difficult to reach these objectives
Resumo:
The Southwest Iberian Margin is caracterized by an intense and diffuse seismic activity due to the convergence between Eurasian and African plates...
Resumo:
Submarine canyons are sites of intense energy and material exchange between the shelf and the deep adjacent basins. To test the hypothesis that active submarine canyons represent preferential conduits of available food for the deep-sea benthos, two mooring lines were deployed at 1200 m depth from November 2008 to November 2009 inside the Blanes canyon and on the adjacent open slope (Catalan Margin, NW Mediterranean Sea). We investigated the fluxes, biochemical composition and food quality of sinking organic carbon (OC). OC fluxes in the canyon and the open slope varied among sampling periods, though not onsistently in the two sites. In particular, while in the open slope the highest OC fluxes were observed in August 2009, in the canyon the highest OC fluxes occurred in AprilMay 2009. For almost the entire study period, the OC fluxes in the canyon were significantly higher than those in the open slope, whereas OC contents of sinking particles collected in the open slope were consistently higher than those in the canyon. This result confirms that submarine canyons are effective conveyors of OC to the deep sea. Particles transferred to the deep sea floor through the canyons are predominantly of inorganic origin, significantly higher than that reaching the open slope at a similar water depth. Using multivariate statistical tests, two major clusters of sampling periods were identified: one in the canyon that grouped trap samples collected in December 2008, oncurrently with the occurrence of a major storm at the sea surface, and associated with increased fluxes of nutritionally available particles from the upper shelf. Another cluster grouped samples from both the canyon and the open slope collected in March 2009, concurrently with the occurrence of the seasonal phytoplankton bloom at the sea surface, and associated with increased fluxes of total phytopigments. Our results confirm the key ecological role of submarine canyons for the functioning of deep-sea ecosystems, and highlight the importance of canyons in linking episodic storms and primary production occurring at the sea surface to the deep sea floor.
Resumo:
The large Cerro de Pasco Cordilleran base metal deposit in central Peru is located on the eastern margin of a middle Miocene diatreme-dome complex and comprises two mineralization stages. The first stage consists of a large pyrite-quartz body replacing Lower Mesozoic Pucara carbonate rocks and, to a lesser extent, diatreme breccia. This body is composed of pyrite with pyrrhotite inclusions, quartz, and black and red chalcedony (containing hypogene hematite). At the contact with the pyrite-quartz body, the diatreme breccia is altered to pyrite-quartz-sericite-pyrite. This body was, in part, replaced by pipelike pyrrhotite bodies zoned outward to carbonate-replacement Zn-Pb ores hearing Fe-rich sphalerite (up to 24 mol % Fes). The second mineralization stage is partly superimposed on the first and consists of zoned east-west-trending Cu-Ag-(Au-Zn-Pb) enargite-pyrite veins hosted in the diatreme breccia in the western part of the deposit and well-zoned Zn-Pb-(Bi-Ag-Cu) carbonate-replacement orebodies; in both cases, sphalerite is Fe poor and the inner parts of the orebodies show typically advanced argillic alteration assemblages, including aluminum phosphate Sulfate (APS) minerals. The zoned enargite-pyrite veins display mineral zoning, from a core of enargite-pyrite +/- alunite with traces of Au, through an intermediate zone of tennantite, chalcopyrite, and Bi minerals to a poorly developed Outer zone hearing sphalerite-galena +/- kaolinite. The carbonate-hosted replacement ores are controlled along N 35 degrees E, N 90 degrees E, N 120 degrees E, and N 170 degrees E faults. They form well-zoned upward-flaring pipelike orebodies with a core of famatinite-pyrite and alunite, an intermediate zone with tetrahedrite-pyrite, chalcopyrite, matildite, cuprobismutite, emplectite, and other Bi minerals accompanied by APS minerals, kaolinite, and dickite, and an outer zone composed of Fe-poor sphalerite (in the range of 0.05-3.5 mol % Fes) and galena. The outermost zone consists of hematite, magnetite, and Fe-Mn-Zn-Ca-Mg carbonates. Most of the second-stage carbonate-replacement orebodies plunge between 25 degrees and 60 degrees to the west, suggesting that the hydrothermal fluids ascended from deeper levels and that no lateral feeding from the veins to the carbonate-replacement orebodies took place. In the Venencocha and Santa Rosa areas, located 2.5 km northwest of the Cerro de Pasco open pit and in the southern part of the deposit, respectively, advanced argillic altered dacitic domes and oxidized veins with advanced argillic alteration halos occur. The latter veins are possibly the oxidized equivalent of the second-stage enargite-pyrite veins located in the western part of the deposit. The alteration assemblage quartz-muscovite-pyrite associated with the pyrite-quartz body suggests that the first stage precipitated at slightly, acidic fin. The sulfide mineral assemblages define an evolutionary path close to the pyrite-pyrrhotite boundary and are characteristic of low-sulfidation states; they suggest that the oxidizing slightly acidic hydrothermal fluid was buffered by phyllite, shale, and carbonate host rock. However, the presence in the pyrite-quartz body of hematite within quartz suggests that, locally, the fluids were less buffered by the host rock. The mineral assemblages of the second mineralization stage are characteristic of high- to intermediate-sulfidation states. High-sulfidation states and oxidizing conditions were achieved and maintained in the cores of the second-stage orebodies, even in those replacing carbonate rocks. The observation that, in places, second-stage mineral assemblages are found in the inner and outer zones is explained in terms of the hydrothermal fluid advancing and waning. Microthermometric data from fluid inclusions in quartz indicate that the different ores of the first mineralization stage formed at similar temperatures and moderate salinities (200 degrees-275 degrees C and 0.2-6.8 wt % NaCl equiv in the pyrite-quartz body; 192 degrees-250 degrees C and 1.1-4.3 wt % NaCl equiv in the pyrrhotite bodies; and 183 degrees-212 degrees C and 3.2-4.0 wt % NaCl equiv in the Zn-Pb ores). These values are similar to those obtained for fluid inclusions in quartz and sphalerite from the second-stage ores (187 degrees-293 degrees C and 0.2-5.2 wt % NaCl equiv in the enargite-pyrite veins: 178 degrees-265 degrees C and 0.2-7.5 wt % NaCl equiv in quartz of carbonate-replacement orebodies; 168 degrees-999 degrees C and 3-11.8 wt % NaCl equiv in sphalerite of carbonate-replacement orebodies; and 245 degrees-261 degrees C and 3.2-7.7 wt % NaCl equiv in quartz from Venencocha). Oxygen and hydrogen isotope compositions oil kaolinite from carbonate-replacement orebodies (delta(18)O = 5.3-11.5%o, delta D = -82 to -114%o) and on alunite from the Venencocha and Santa Rosa areas (delta(18)O = 1.9-6.9%o, delta D = -56 to -73%o). Oxygen isotope compositions of quartz from the first and second stages have 6180 values from 9.1 to 1.7.8 per mil. Calculated fluids in equilibrium with kaolinite have delta(18)O values of 2.0 to 8.2 and delta D values of -69 to -97 per mil; values in equilibrium with alunite are -1.4 to -6.4 and -62 to -79 per mil. Sulfur isotope compositions of sulfides from both stages have a narrow range of delta(34)S values, between -3.7 and +4.2 per mil; values for sulfates from the second stage are between 4.2 and 31.2 per mil. These results define two mixing trends for the ore-forming fluids. The first trend reflects mixing between a moderately saline (similar to 10 wt % NaCl equiv) magmatic end member that had degassed (as indicated by the low delta D values) and meteoric water. The second mixing indicates condensation of magmatic vapor with HCl and SO(2) into meteoric water, which formed alunite. The hydrothermal system at Cerro de Pasco was emplaced at a shallow depth (similar to 500 m) in the epithermal and upper part of a porphyry environment. The similar temperatures and salinities obtained for the first stage and second stages, together with the stable isotope data, indicate that both stages are linked and represent successive stages of epithermal polymetallic mineralization in the upper part of a porphyry system.
Resumo:
The results of a coupled, in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb study on zircon and geochemical characterization of the Eastern Cordilleran intrusives of Peru reveal 1.15 Ga of intermittent magmatism along central Western Amazonia, the Earth's oldest active open continental margin. The eastern Peruvian batholiths are volumetrically dominated by plutonism related to the assembly and breakup of Pangea during the Paleozoic-Mesozoic transition. A Carboniferous-Permian (340-285 Ma) continental arc is identified along the regional orogenic strike from the Ecuadorian border (6 degrees S) to the inferred inboard extension of the Arequipa-Antofalla terrane in southern Peru (14 degrees S). Widespread crustal extension and thinning, which affected western Gondwana throughout the Permian and Triassic resulted in the intrusion of the late- to post-tectonic La Merced-San Ramon-type anatectites dated between 275 and 220 Ma, while the emplacement of the southern Cordillera de Carabaya peraluminous granitoids in the Late Triassic to Early Jurassic (220-190 Ma) represents, temporally and regionally, a separate tectonomagmatic event likely related to resuturing of the Arequipa-Antofalla block. Volcano-plutonic complexes and stocks associated with the onset of the present Andean cycle define a compositionally bimodal alkaline suite and cluster between 180 and 170 Ma. A volumetrically minor intrusive pulse of Oligocene age (ca. 30 Ma) is detected near the southwestern Cordilleran border with the Altiplano. Both post-Gondwanide (30-170 Ma), and Precambrian plutonism (691-1123 Ma) are restricted to isolated occurrences spatially comprising less than 15% of the Eastern Cordillera intrusives. Only one remnant of a Late Ordovician intrusive belt is recognized in the Cuzco batholith (446.5 +/- 9.7 Ma) indicating that the Famatinian arc system previously identified in Peru along the north-central Eastern Cordillera and the coastal Arequipa-Antofalla terrane also existed inboard of this parautochthonous crustal fragment. Hitherto unknown occurrences of late Mesoproterozoic and middle Neoproterozoic granitoids from the south-central cordilleran segment define magmatic events at 691 +/- 13 Ma, 751 +/- 8 Ma, 985 +/- 14 Ma, and 1071-1123 +/- 23 Ma that are broadly coeval with the Braziliano and Grenville-Sunsas orogenies, respectively. Our data suggest the existence of a continuous orogenic belt in excess of 3500 km along Western Amazonia during the formation of Rodinia, its ``early'' fragmentation prior to 690 Ma, and support a model of reaccretion of the Paracas-Arequipa-Antofalla terrane to western Gondwana in the Early Ordovician with subsequent detachment of the Paracas segment in form of the Mexican Oaxaquia microcontinent in Middle Ordovician. A tectonomagmatic model involving slab detachment, followed by underplating of cratonic margin by asthenospheric mantle is proposed for the genesis of the volumetrically dominant Late Paleozoic to early Mesozoic Peruvian Cordilleran batholiths.
Resumo:
In this thesis, I develop analytical models to price the value of supply chain investments under demand uncer¬tainty. This thesis includes three self-contained papers. In the first paper, we investigate the value of lead-time reduction under the risk of sudden and abnormal changes in demand forecasts. We first consider the risk of a complete and permanent loss of demand. We then provide a more general jump-diffusion model, where we add a compound Poisson process to a constant-volatility demand process to explore the impact of sudden changes in demand forecasts on the value of lead-time reduction. We use an Edgeworth series expansion to divide the lead-time cost into that arising from constant instantaneous volatility, and that arising from the risk of jumps. We show that the value of lead-time reduction increases substantially in the intensity and/or the magnitude of jumps. In the second paper, we analyze the value of quantity flexibility in the presence of supply-chain dis- intermediation problems. We use the multiplicative martingale model and the "contracts as reference points" theory to capture both positive and negative effects of quantity flexibility for the downstream level in a supply chain. We show that lead-time reduction reduces both supply-chain disintermediation problems and supply- demand mismatches. We furthermore analyze the impact of the supplier's cost structure on the profitability of quantity-flexibility contracts. When the supplier's initial investment cost is relatively low, supply-chain disin¬termediation risk becomes less important, and hence the contract becomes more profitable for the retailer. We also find that the supply-chain efficiency increases substantially with the supplier's ability to disintermediate the chain when the initial investment cost is relatively high. In the third paper, we investigate the value of dual sourcing for the products with heavy-tailed demand distributions. We apply extreme-value theory and analyze the effects of tail heaviness of demand distribution on the optimal dual-sourcing strategy. We find that the effects of tail heaviness depend on the characteristics of demand and profit parameters. When both the profit margin of the product and the cost differential between the suppliers are relatively high, it is optimal to buffer the mismatch risk by increasing both the inventory level and the responsive capacity as demand uncertainty increases. In that case, however, both the optimal inventory level and the optimal responsive capacity decrease as the tail of demand becomes heavier. When the profit margin of the product is relatively high, and the cost differential between the suppliers is relatively low, it is optimal to buffer the mismatch risk by increasing the responsive capacity and reducing the inventory level as the demand uncertainty increases. In that case, how¬ever, it is optimal to buffer with more inventory and less capacity as the tail of demand becomes heavier. We also show that the optimal responsive capacity is higher for the products with heavier tails when the fill rate is extremely high.
Resumo:
A new Early Triassic marine fauna is described from the Central Oman Mountains. The fauna is Griesbachian in age, on the basis of abundant conodonts and ammonoids, and was deposited in an oxygenated seamount setting off the Arabian platform margin. It is the first Griesbachian assemblage from a well-oxygenated marine setting and thus provides a test for the hypothesis that widespread anoxia prevented rapid recovery. The earliest Griesbachian (parvus zone) contains a low-diversity benthic fauna dominated by the bivalves Promyalina and Claraia. A similar level of recovery characterizes the immediate postextinction interval worldwide. However, the middle upper Griesbachian sedimentary rocks (isarcica and catinata zones) contain an incredibly diverse benthic fauna of bivalves, gastropods, articulate brachiopods, a new undescribed crinoid, echinoids, and ostracods. This fauna is more diverse and ecologically complex than the typical middle to late Griesbachian faunas described from oxygen-restricted settings worldwide. The level of postextinction recovery observed in the Oman fauna is not recorded elsewhere until the Spathian. These data support the hypothesis that the apparent delay in recovery after the end-Permian extinction event was due to widespread and prolonged benthic oxygen restriction: in the absence of anoxia, marine recovery is much faster.
Resumo:
Near Karnezeika a roughly 140 m thick Upper Cretaceous section consists of interbedded pelagic limestones, cherts and coarse polymict breccias including ophiolites and shallow water limestones. At the base, pink pelagic limestones rest on deeply altered and fractured Lower Jurassic Pantokrator Limestone. This first pelagic facies is dated as middle Turonian, based on planktonic Foraminifera. Over 100 m of coarse ophiolite-carbonate breccias, interpreted as a channel or canyon fill in a pelagic environment, document the erosion of the Late Jurassic nappe edifice along the Cretaceous Pelagonian margin. Above these breccias, we mesured 16 m of principally pink and red pelagic limestones and radiolarian cherts, in which we recovered well-preserved radiolarians discussed here. In this interval, the presence of planktonic Foraminfera allows to state a late Turonian to Coniacian age. More than 40 radiolarian species are described and figured in this work. The radiolarian chronostratigraphy established by 10 different authors in 11 publications was compared for this study and used to establish radiolarian ranges. This exercise shows major discrepancies between authors for the radiolarian ranges of the studied assemblage. Nevertheless, a Turonian age can be stated based on a synthesis of cited radiolarian ranges. This age is consistent with the age based on planktonic foraminifera. In combining the ages of both Radiolaria and planktonic Foraminifera, the studied samples can be restricted to the late Turonian. However, the discrepancies of published radiolarian ranges call for an urgent, major revision of the Late Cretaceous radiolarian biochronology. The integration of planktonic foraminifera with radiolarians may greatly enhance biochronologic resolution in sections where both groups occur.
Resumo:
The suitable timing of capacity investments is a remarkable issue especially in capital intensive industries. Despite its importance, fairly few studies have been published on the topic. In the present study models for the timing of capacity change in capital intensive industry are developed. The study considers mainly the optimal timing of single capacity changes. The review of earlier research describes connections between cost, capacity and timing literature, and empirical examples are used to describe the starting point of the study and to test the developed models. The study includes four models, which describe the timing question from different perspectives. The first model, which minimizes unit costs, has been built for capacity expansion and replacement situations. It is shown that the optimal timing of an investment can be presented with the capacity and cost advantage ratios. After the unit cost minimization model the view is extended to the direction of profit maximization. The second model states that early investments are preferable if the change of fixed costs is small compared to the change of the contribution margin. The third model is a numerical discounted cash flow model, which emphasizes the roles of start-up time, capacity utilization rate and value of waiting as drivers of the profitable timing of a project. The last model expands the view from project level to company level and connects the flexibility of assets and cost structures to the timing problem. The main results of the research are the solutions of the models and analysis or simulations done with the models. The relevance and applicability of the results are verified by evaluating the logic of the models and by numerical cases.
Resumo:
The Permian Chert Event (PCE) was a 30 Ma long episode of unusual chert accumulation along the northwest margin of Pangea, and possibly worldwide. The onset of the PCE occurred at about the Sakmarian-Artinskian boundary in the Sverdrup Basin, Canadian Arctic, where it coincides with a maximum flooding event, the ending of high-frequency/high-amplitude shelf cyclicity, the onset of massive biogenic chert deposition in deep-water distal areas, and a long-term shift from warm- to cool-water carbonate sedimentation in shallow-water proximal areas. A similar and coeval shift is observed from the Barents Sea to the northwestern USA. A landward and southward expansion of silica factories occurred during the Middle and Late Permian at which time warm-water carbonate producers disappeared completely from the northwest margin of Pangea. Biotically impoverished and increasingly narrow cold-water carbonate factories (characterised by non-cemented bioclasts of sponges, bryozoans, echinoderms and brachiopods) were then progressively replaced by silica factories. By Late Permian time, little carbonate sediments accumulated in the Barents Sea and in the Sverdrup Basin. where the deep- to shallow-water sedimentary spectrum was occupied by siliceous sponge spicules. By that time, biogenic silica sedimentation was common throughout the world. Silica factories collapsed in the Late Permian, abruptly bringing the PCE to an end. In northwest Pangea, the end- Permian collapse of the PCE was associated with a major transgression and with a return to much warmer oceanic and continental climatic conditions. Chert deposition resumed in the distal oceanic areas during the early Middle Triassic (Anisian) after a 8-10 Ma interruption (Early Triassic Chert Gap). The conditions necessary for the onset, expansion and zenith of the PCE were provided by the thermohaline circulation of nutrient-rich cold waters along the northwestern and western margin of Pangea, and possibly throughout the world oceans. These conditions provided an efficient transportation mechanism that constantly replenished the supply of silica in the area, created a nutrient- and oxygen-rich environment favouring siliceous biogenic productivity. established cold sea-floor conditions, hindering silica dissolution, while increasing calcium carbonate solubility, and provided conditions adverse to organic and inorganic carbonate production, The northwest margin of Pangea was, for nearly 30 Ma. bathed by cold waters presumably derived from the seasonal melting of northern sea ice, the assumed engine for thermohaline circulation. This process started near the Sakmarian-Artinskian boundary. intensified throughout Middle and Late Permian time and ceased suddenly in latest Permian time, It led to oceanic conditions much colder than normally expected from the palaeolatitudes. and the influence of cold northerly-derived water was felt as far south southern Nevada. The demise of silica factories was caused by the rapid breakdown of these conditions and the establishment of a much warmer marine environment accompanied by sluggish circulation and perhaps a reduced input of dissolved silica to the ocean. Complete thawing of northern sea ice would have ended thermohaline circulation and led to warm and sluggish oceanic conditions inimical to the production. accumulation and preservation of biogenic silica.
Resumo:
Amphibole fractionation in the deep roots of subduction-related magmatic arcs is a fundamental process for the generation of the continental crust. Field relations and geochemical data of exposed lower crustal igneous rocks can be used to better constrain these processes. The Chelan Complex in the western U. S. forms the lowest level of a 40-km thick exposed crustal section of the North Cascades and is composed of olivine websterite, pyroxenite, hornblendite, and dominantly by hornblende gabbro and tonalite. Magmatic breccias, comb layers and intrusive contacts suggest that the Chelan Complex was build by igneous processes. Phase equilibria, textural observations and mineral chemistry yield emplacement pressures of similar to 1.0 GPa followed by isobaric cooling to 700 degrees C. The widespread occurrence of idiomorphic hornblende and interstitial plagioclase together with the lack of Eu anomalies in bulk rock compositions indicate that the differentiation is largely dominated by amphibole. Major and trace element modeling constrained by field observations and bulk chemistry demonstrate that peraluminous tonalite could be derived by removing successively 3% of olivine websterite, 12% of pyroxene hornblendite, 33% of pyroxene hornblendite, 19% of gabbros, 15% of diorite and 2% tonalite. Peraluminous tonalite with high Sr/Y that are worldwide associated with active margin settings can be derived from a parental basaltic melt by crystal fractionation at high pressure provided that amphibole dominates the fractionation process. Crustal assimilation during fractionation is thus not required to generate peraluminous tonalite.