999 resultados para RAT LUNG
Resumo:
Minocycline has been shown to inhibit microglia reactivity, and to decrease the severity and progression of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. It remained to be examined whether minocycline was also able to promote remyelination. In the present study, myelinating aggregating brain cell cultures were used as a model to study the effects of minocycline on microglial reactivity, demyelination, and remyelination. Cultures were treated simultaneously with two inflammatory agents, interferon-γ (IFN-γ) and lipopolysaccharide (LPS), which caused an inflammatory response accompanied by demyelination. The inflammatory response was characterized by microglial reactivity, upregulation of inflammatory cytokines and iNOS, and increased phophorylation of P38 and P44/42 mitogen activated protein (MAP) kinases. Minocycline inhibited microglial reactivity, and attenuated the increased phophorylation of P38 and P44/42 MAP kinases. Demyelination, determined by a decrease in myelin basic protein (MBP) content and immunoreactivity 48 h after the treatment with the inflammatory agents, was not prevented by minocycline. However, 1 week after demyelination was assessed, the MBP content was restored in presence of minocycline, indicating that remyelination was promoted. Concomitantly, in cultures treated with minocycline, the markers of oligodendrocyte precursors cells (OPCs) and immature oligodendrocytes NG2 and O4, respectively, were decreased compared to cultures treated with the inflammatory agents only. These results suggest that minocycline attenuates microglial reactivity and favors remyelination by enhancing the differentiation of OPCs and immature oligodendrocytes.
Resumo:
PURPOSE: To evaluate the rate of tumor recurrence within the irradiated volume after initial low-dose irradiation of limited-stage small-cell lung cancer (SCLC), to assess the tolerance of a sequential combination of low-dose chest irradiation followed by chemotherapy, and to confirm the responsiveness of limited-stage SCLC to low-dose irradiation. METHODS AND MATERIALS: In this pilot study, 26 patients with limited-stage SCLC were treated by first-line 20-Gy thoracic irradiation followed 3 weeks later by chemotherapy (cisplatin, doxorubicin, and etoposide for six cycles). RESULTS: We present our final results with a median follow-up of surviving patients of 7 years. The response rate to this low-dose irradiation was 83%, with an overall response rate to radiochemotherapy of 96% and a median survival of 21 months. No unexpected early or late toxicity was observed. The rate of initial isolated local failure was 8%, which compares favorably with other published series using higher doses of radiochemotherapy. CONCLUSION: An initial chest irradiation of 20 Gy before chemotherapy could be sufficient to reduce the risk of local failure during the time of survival of patients with limited-stage SCLC. Potential advantages of this treatment may be the prevention of resistance mechanisms to radiotherapy induced by preliminary chemotherapy and a reduced radiation-induced toxicity.
Resumo:
The physical disector is a method of choice for estimating unbiased neuron numbers; nevertheless, calibration is needed to evaluate each counting method. The validity of this method can be assessed by comparing the estimated cell number with the true number determined by a direct counting method in serial sections. We reconstructed a 1/5 of rat lumbar dorsal root ganglia taken from two experimental conditions. From each ganglion, images of 200 adjacent semi-thin sections were used to reconstruct a volumetric dataset (stack of voxels). On these stacks the number of sensory neurons was estimated and counted respectively by physical disector and direct counting methods. Also, using the coordinates of nuclei from the direct counting, we simulate, by a Matlab program, disector pairs separated by increasing distances in a ganglion model. The comparison between the results of these approaches clearly demonstrates that the physical disector method provides a valid and reliable estimate of the number of sensory neurons only when the distance between the consecutive disector pairs is 60 microm or smaller. In these conditions the size of error between the results of physical disector and direct counting does not exceed 6%. In contrast when the distance between two pairs is larger than 60 microm (70-200 microm) the size of error increases rapidly to 27%. We conclude that the physical dissector method provides a reliable estimate of the number of rat sensory neurons only when the separating distance between the consecutive dissector pairs is no larger than 60 microm.
Resumo:
Objectives To prospectively assess respiratory health in wastewater workers and garbage collectors over 5 years. Methods Exposure, respiratory symptoms and conditions, spirometry and lung-specific proteins were assessed yearly in a cohort of 304 controls, 247 wastewater workers and 52 garbage collectors. Results were analysed with random coefficient models and linear regression taking into account several potential confounders. Results Symptoms, spirometry and lung-specific proteins were not affected by occupational exposure. Conclusions In this population no effects of occupational exposure to bioaerosols were found, probably because of good working conditions.
Resumo:
EGFR receptor is expressed on most of the non small cell lung carcinoma (NSCLC) cells. Its relative importance in oncogenesis and tumour progression seems to greatly vary among NSCLC. Two molecules targeting differently EGFR are currently used for the treatment of metastatic NSCLC. cetuximab, a monoclonal antibody directed against the extracellular domain of the receptor, leads to a moderate survival benefit when associated with standard first-line chemotherapy. Erlotinib, a small EGFR tyrosine-kinase inhibitor molecule is used in 2nd or 3rd treatment line. Predictive factors for efficiency of these new treatments are subjects of intense research, in order to allow a better selection of the patients who could benefit from such a strategy.
Resumo:
CYR61 (Cysteine-rich angiogenic inducer 61) is a matricellular protein that regulates cell proliferation, adhesion, migration and cell survival through interaction with various types of integrin cell adhesion receptors. At tissue level it is implicated in the regulation of embryonic development, wound healing and angiogenesis. CYR61 has also been involved in cancer progression, however its role appears to be diverse and complex depending on the cancer type and stage. Its contribution to metastasis formation is still unclear. Previous findings reported by our laboratory demonstrated that CYR61 cooperates with avßs integrin to promote invasion and metastasis of cancers growing in a pre-irradiated microenvironment. In this work, we used an orthotopic model of breast cancer to show for the first time that silencing of CYR61 in breast cancer cells suppresses lung metastasis formation. Silencing of MDA-MB-231 reduced both local growth and lung metastasis formation of tumor cells implanted in a pre-irradiated mammary fat pad. CYR61 silencing in tumors growing in non-irradiated mammary fat pads did not impact primary tumor growth but decreased lung metastasis formation. The effect of CYR61 on spontaneous lung metastasis formation during natural cancer progression was further examined by using an experimental model of metastasis. Results from these experiments indicate that CYR61 is critically involved in promoting cancer cells entry into lung parenchyma rather than later steps of colonization. In vitro experiments showed that CYR61 promotes tumor cell spreading, migration and transendothelial migration. CYR61 also supported colony formation under anchorage-independent condition and promotes resistance to anoikis through the involvement of ß1 and ß3 integrin. These results indicate that CYR61 promotes lung metastasis of breast cancer by facilitating extravasation into lung parenchyma through enhanced motility, transendothelial migration and resistance to anoikis. - CYR61 (Cysteine-rich angiogenic inducer 61) est une protéine matricellulaire qui régule la prolifération, l'adhérence, la migration et la survie des cellules par son interaction avec différents types de récepteurs d'adhésion cellulaire de la famille des intégrine. Au niveau des tissus, CYR61 est impliquée dans la régulation du développement embryonnaire, de la cicatrisation et de l'angiogenèse. CYR61 a également été impliquée dans le cancer, mais son rôle semble être divers et complexe en fonction du type du cancer et de son stade. Son rôle dans la formation des métastases n'est pas encore clair. Des résultats antérieurs rapportés par notre laboratoire ont montré que CYR61 coopère avec l'intégrine avß5 pour favoriser l'invasion et la métastase de tumeurs se développant dans un micro-environnement pré-irradié. Dans ce travail, nous avons utilisé un modèle orthotopique de cancer du sein pour démontrer pour la première fois que l'extinction (silencing) du gène CYR61 dans le cancer du sein réduit la formation de métastases pulmonaires. L'extinction de CYR61 dans la lignée cellulaire de cancer du sein humain MDA-MB- 231 réduit à la fois la croissance local ainsi que la formation de métastases pulmonaires à partir de cellules implantés dans les coussinets adipeux mammaires pré-irradié. L'extinction de CYR61 dans des tumeurs grandissant dans les coussinets adipeux mammaires non irradiées n'a pas d'incidence sur la croissance tumorale primaire mais réduit la formation des métastases pulmonaires. Par la suite nous avons examiné l'effet de CYR61 sur la formation de métastases pulmonaires en utilisant un modèle expérimental de métastase. Les résultats de ces expériences indiquent que CYR61 est impliquée de manière cruciale dans les étapes précoces de la formation de métastases, plutôt que dans les étapes tardives de colonisation du poumon. Des expériences in vitro ont montré que CYR61 favorise l'étalement, la migration et la transmigration endothéliale des cellules tumorales. CYR61 favorise également la formation de colonies dans des conditions indépendante de l'ancrage et la résistance à l'anoïkis par l'engagement des intégrines ß1 et ß3. Ces résultats indiquent que CYR61 favorise les métastases pulmonaires du cancer du sein en facilitant l'extravasation dans le parenchyme pulmonaire grâce à la stimulation de la motilità, de la migration transmigration endothéliale et de la résistance à l'anoïkis.
Resumo:
Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and hair pigmentation on the incorporation of EtG into rat hair. Ethanol and EtG kinetics in blood were investigated after a single administration of ethanol. Eighteen rats were divided into four groups receiving 0 (control group), 1, 2, or 3g ethanol/kg body weight. Ethanol was administered on 4 consecutive days per week for 3 weeks by intragastric route. Twenty-eight days after the initial ethanol administration, newly grown hair was shaved. Pigmented and nonpigmented hair were analyzed separately by gas chromatography coupled to tandem mass spectrometry. Blood samples were collected within 12h after the ethanol administration. EtG and ethanol blood levels were measured by liquid chromatography coupled to tandem mass spectrometry and headspace gas chromatography-flame ionization detector, respectively. No statistically significant difference was observed in EtG concentrations between pigmented and nonpigmented hair (Spearman's rho=0.95). Thus, EtG incorporation into rat hair was not affected by hair pigmentation. Higher doses of ethanol resulted in greater blood ethanol area under the curve of concentration versus time (AUC) and in greater blood EtG AUC. A positive correlation was found between blood ethanol AUC and blood EtG AUC (Spearman's rho=0.84). Increased ethanol administration was associated with an increased EtG concentration in hair. Blood ethanol AUC was correlated with EtG concentration in hair (Pearson's r=0.89). EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Ethanol was metabolized at a median rate of 0.22 g/kg/h, and the median elimination half-life of EtG was 1.21 h. This study supports that the bloodstream is likely to display a major role in the hair EtG incorporation.
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
Lung cancer is characterized by the highest incidence of solid tumor-related brain metastases, which are reported with a growing incidence during the last decade. Prognostic assessment may help to identify subgroups of patients that could benefit from more aggressive therapy of metastatic disease, in particular when central nervous system is involved. The recent sub-classification of non-small cell lung cancer (NSCLC) into molecularly-defined "oncogene-addicted" tumors, the emergence of effective targeted treatments in molecularly defined patient subsets, global improvement of advanced NSCLC survival as well as the availability of refined new radiotherapy techniques are likely to impact on outcomes of patients with brain dissemination. The present review focuses on key evidence and research strategies for systemic treatment of patients with central nervous system involvement in non-small cell lung cancer.