980 resultados para Pupil filters
Resumo:
We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus.
Resumo:
Ensemble-based data assimilation is rapidly proving itself as a computationally-efficient and skilful assimilation method for numerical weather prediction, which can provide a viable alternative to more established variational assimilation techniques. However, a fundamental shortcoming of ensemble techniques is that the resulting analysis increments can only span a limited subspace of the state space, whose dimension is less than the ensemble size. This limits the amount of observational information that can effectively constrain the analysis. In this paper, a data selection strategy that aims to assimilate only the observational components that matter most and that can be used with both stochastic and deterministic ensemble filters is presented. This avoids unnecessary computations, reduces round-off errors and minimizes the risk of importing observation bias in the analysis. When an ensemble-based assimilation technique is used to assimilate high-density observations, the data-selection procedure allows the use of larger localization domains that may lead to a more balanced analysis. Results from the use of this data selection technique with a two-dimensional linear and a nonlinear advection model using both in situ and remote sounding observations are discussed.
Resumo:
We study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in α turbulence, governed by ∂θ/∂t+J(ψ,θ)=ν∇2θ+f, where θ=(−Δ)α/2ψ is generalized vorticity, and ψ^(k)=k−αθ^(k) in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow (α=1), regular two-dimensional flow (α=2) and rotating shallow flow (α=3), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general α, and point out their limitations. Using an α-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as α increases. More importantly, the energy cascade is downscale in the self-similar inertial range for 2.5<α<10. At α=2.5 and α=10, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for α<4. However, downscale energy flux in the EDQNM self-similar inertial range for α>2.5 leads us to predict that any inverse cascade for α≥2.5 will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for α≥2.5 is significantly steeper than the KLB prediction, while for α<2.5 we obtain the KLB spectrum.
Resumo:
Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.
Resumo:
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.