991 resultados para Proxied Multi-Radio Interface


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest treball final de carrera es basa en la creació d'una borsa de treball on-line, distribuïda i multi-dispositiu. Ha estat creada a partir de noves tecnologies com Play Framework i Twiter Bootstrap, utilitzant els llenguatges Java i Scala, usant marcatge HTML5 i desplegada en un servidor de cloud computing anomenat Heroku.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde su nacimiento, la radio ha estado en constante peligro de desaparición. La prescripción y legitimidad asociadas a las ondas pueden resguardar a un servicio público en constante crisis. Las listas de reproducción o playlists son la base de la programación radiofónica musical y la posibilidad de acceder a las obras musicales tal y como “se oyen” es una opción que la radio en Internet ofrece. Este trabajo analiza cómo abordan los programas temáticos musicales de las emisoras de radio de antena convencional y bitcasters de titularidad pública en España la creación y publicación de listas de reproducción en Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is an integral part of a broader study focused on the design and implementation of self-cleaning culverts, i.e., configurations that prevent the formation of sediment deposits after culvert construction or cleaning. Sediment deposition at culverts is influenced by many factors, including the size and characteristics of material of which the channel is composed, the hydraulic characteristics generated under different hydrology events, the culvert geometry design, channel transition design, and the vegetation around the channel. The multitude of combinations produced by this set of variables makes the investigation of practical situations a complex undertaking. In addition to the considerations above, the field and analytical observations have revealed flow complexities affecting the flow and sediment transport through culverts that further increase the dimensions of the investigation. The flow complexities investigated in this study entail: flow non-uniformity in the areas of transition to and from the culvert, flow unsteadiness due to the flood wave propagation through the channel, and the asynchronous correlation between the flow and sediment hydrographs resulting from storm events. To date, the literature contains no systematic studies on sediment transport through multi-box culverts or investigations on the adverse effects of sediment deposition at culverts. Moreover, there is limited knowledge about the non-uniform, unsteady sediment transport in channels of variable geometry. Furthermore, there are few readily useable (inexpensive and practical) numerical models that can reliably simulate flow and sediment transport in such complex situations. Given the current state of knowledge, the main goal of the present study is to investigate the above flow complexities in order to provide the needed insights for a series of ongoing culvert studies. The research was phased so that field observations were conducted first to understand the culvert behavior in Iowa landscape. Modeling through complementary hydraulic model and numerical experiments was subsequently carried out to gain the practical knowledge for the development of the self-cleaning culvert designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents advanced classification methods for very high resolution images. Efficient multisource information, both spectral and spatial, is exploited through the use of composite kernels in support vector machines. Weighted summations of kernels accounting for separate sources of spectral and spatial information are analyzed and compared to classical approaches such as pure spectral classification or stacked approaches using all the features in a single vector. Model selection problems are addressed, as well as the importance of the different kernels in the weighted summation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the technical feasibility of multi-detector row computed tomographic (CT) angiography in the assessment of peripheral arterial bypass grafts and to evaluate its accuracy and reliability in the detection of graft-related complications, including graft stenosis, aneurysmal changes, and arteriovenous fistulas. MATERIALS AND METHODS: Four-channel multi-detector row CT angiography was performed in 65 consecutive patients with 85 peripheral arterial bypass grafts. Each bypass graft was divided into three segments (proximal anastomosis, course of the graft body, and distal anastomosis), resulting in 255 segments. Two readers evaluated all CT angiograms with regard to image quality and the presence of bypass graft-related abnormalities, including graft stenosis, aneurysmal changes, and arteriovenous fistulas. The results were compared with McNemar test with Bonferroni correction. CT attenuation values were recorded at five different locations from the inflow artery to the outflow artery of the bypass graft. These findings were compared with the findings at duplex ultrasonography (US) in 65 patients and the findings at conventional digital subtraction angiography (DSA) in 27. RESULTS: Image quality was rated as good or excellent in 250 (98%) and in 252 (99%) of 255 bypass segments, respectively. There was excellent agreement both between readers and between CT angiography and duplex US in the detection of graft stenosis, aneurysmal changes, and arteriovenous fistulas (kappa = 0.86-0.99). CT angiography and duplex US were compared with conventional DSA, and there was no statistically significant difference (P >.25) in sensitivity or specificity between CT angiography and duplex US for both readers for detection of hemodynamically significant bypass stenosis or occlusion, aneurysmal changes, or arteriovenous fistulas. Mean CT attenuation values ranged from 232 HU in the inflow artery to 281 HU in the outflow artery of the bypass graft. CONCLUSION: Multi-detector row CT angiography may be an accurate and reliable technique after duplex US in the assessment of peripheral arterial bypass grafts and detection of graft-related complications, including stenosis, aneurysmal changes, and arteriovenous fistulas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amnestic mild cognitive impairment (aMCI) is characterized by memory deficits alone (single-domain, sd-aMCI) or associated with other cognitive disabilities (multi-domain, md-aMCI). The present study assessed the patterns of electroencephalographic (EEG) activity during the encoding and retrieval phases of short-term memory in these two aMCI subtypes, to identify potential functional differences according to the neuropsychological profile. Continuous EEG was recorded in 43 aMCI patients, whose 16 sd-aMCI and 27 md-aMCI, and 36 age-matched controls (EC) during delayed match-to-sample tasks for face and letter stimuli. At encoding, attended stimuli elicited parietal alpha (8-12 Hz) power decrease (desynchronization), whereas distracting stimuli were associated with alpha power increase (synchronization) over right central sites. No difference was observed in parietal alpha desynchronization among the three groups. For attended faces, the alpha synchronization underlying suppression of distracting letters was reduced in both aMCI subgroups, but more severely in md-aMCI cases that differed significantly from EC. At retrieval, the early N250r recognition effect was significantly reduced for faces in md-aMCI as compared to both sd-aMCI and EC. The results suggest a differential alteration of working memory cerebral processes for faces in the two aMCI subtypes, face covert recognition processes being specifically altered in md-aMCI.