985 resultados para Protein Crystal
Resumo:
Rifampicin and its derivatives are at the forefront of the current standard chemotherapeutic regimen for active tuberculosis; they act by inhibiting the transcription activity of prokaryotic RNA polymerase. Rifampicin is believed to interact with the beta subunit of RNA polymerase. However, it has been observed that protein-protein interactions with RNA polymerase core enzyme lead to its reduced susceptibility to rifampicin. This mechanism became more diversified with the discovery of RbpA, a novel RNA polymerase-binding protein, in Streptomyces coelicolor that could mitigate the effect of rifampicin on RNA polymerase activity. MsRbpA is a homologue of RbpA in Mycobacterium smegmatis. On deciphering the role of MsRbpA in M. smegmatis we found that it interacts with RNA polymerase and increases the rifampicin tolerance levels, both in vitro and in vivo. It interacts with the beta subunit of RNA polymerase. However, it was found to be incapable of rescuing rifampicin-resistant RNA polymerases in the presence of rifampicin at the respective IC50.
Resumo:
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.
Resumo:
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
Resumo:
The structures of two crystal forms of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe have been determined. The triclinic form (P1, Z = 1) from DMSO/H2O crystallizes as a dihydrate (Karle, Sukumar & Balaram (1986) Proc, Natl, Acad. Sci. USA 83, 9284-9288). The monoclinic form (P2(1), Z = 2) crystallized from dioxane is anhydrous. The conformation of the peptide is essentially the same in both crystal system, but small changes in conformational angles are associated with a shift of the helix from a predominantly alpha-type to a predominantly 3(10)-type. The r.m.s. deviation of 33 atoms in the backbone and C beta positions of residues 2-8 is only 0.29 A between molecules in the two polymorphs. In both space groups, the helical molecules pack in a parallel fashion, rather than antiparallel. The only intermolecular hydrogen bonding is head-to-tail between helices. There are no lateral hydrogen bonds. In the P2(1) cell, a = 9.422(2) A, b = 36.392(11) A, c = 10.548(2) A, beta = 111.31(2) degrees and V = 3369.3 A for 2 molecules of C60H97N11O13 per cell.
Resumo:
In the crystal, the backbone of Boc-(Aib-Val-Ala-Leu)2-Aib-OMe adopts a helical form with four alpha-type hydrogen bonds in the middle, flanked by 3(10)-type hydrogen bonds at either end. The helical molecules stack in columns with head-to-tail hydrogen bonds, either directly between NH and CO, or bridged by solvent molecules. The packing of the helices is parallel, even in space group P2(1). Cell parameters are a = 9.837(2) A, b = 15.565(3) A, c = 20.087(5) A, beta = 96.42(2) degrees, dcalc = 1.091 g/cm3 for C46H83N9O12.1.5H2O.0.67CH3OH. There appears to be some hydration of the backbone in this apolar helix.
Resumo:
The crystal structure analysis of the cyclic biscystine peptide [Boc-Cys1-Ala2-Cys3-NHCH3]2 with two disulfide bridges confirms the antiparallel ?-sheet conformation for the molecule as proposed for the conformation in solution. The molecule has exact twofold rotation symmetry. The 22-membered ring contains two transannular NH ? OC hydrogen bonds and two additional NH ? OC bonds are formed at both ends of the molecule between the terminal (CH3)3COCO and NHCH3 groups. The antiparallel peptide strands are distorted from a regularly pleated sheet, caused mainly by the L-Ala residue in which ?=� 155° and ?= 162°. In the disulfide bridge C? (1)-C? (1)-S(1)-(3')-C?(3')-C?(3'), S�S = 2.030 Å, angles C? SS = 107° and 105°, and the torsional angles are �49, �104, +99, �81, �61°, respectively. The biscystine peptide crystallizes in space group C2 with a = 14.555(2) Ã…, b = 10.854(2) Ã…, c = 16.512(2)Ã…, and ?= 101.34(1) with one-half formula unit of C30H52N8O10S4· 2(CH3)2SO per asymmetric unit. Least-squares refinement of 1375 reflections observed with |F| > 3?(F) yielded an R factor of 7.2%.
Resumo:
The virus inducible non-coding RNA (VINC) was detected initially in the brain of mice infected with Japanese encephalitis virus (JEV) and rabies virus. VINC is also known as NEAT1 or Men epsilon RNA. It is localized in the nuclear paraspeckles of several murine as well as human cell lines and is essential for paraspeckle formation. We demonstrate that VINC interacts with the paraspeckle protein, P54nrb through three different protein interaction regions (PIRs) one of which (PIR-1) is localized near the 50 end while the other two (PIR-2, PIR-3) are localized near the 30 region of VINC. Our studies suggest that VINC may interact with P54nrb through a novel mechanism which is different from that reported for protein coding RNAs. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.
Resumo:
An N-alpha-protected model tripeptide amide containing, in the central position, an alpha,beta-dehydrophenylalanine (Z-configurational isomer), Boc-L-Pro-DELTA-Z-Phe-Gly-NH2 (Boc, tert-butyloxycarbonyl), has been synthesized by solution methods and fully characterized. IR absorption and H-1 NMR studies provided evidence for the occurrence of a significant population of a conformer containing two consecutive, intramolecularly H-bonded (type II-III') beta-bends in solution. However, an X-ray diffraction analysis clearly indicates that only the type-II beta-bend structure survives in the crystal state.
Resumo:
The membrane channel-forming polypeptide, Leu(1)-zervamicin, Ac-Leu-Ile-Gln-Iva-Ile(5)-Thr-Aib-Leu-Aib-Hyp(10) -Gln-Aib-Hyp-Aib-Pro(15)-Phol (Aib: alpha-aminoisobutyric acid; Iva: isovaline; Hyp: 4-hydroxyproline; Phol: phenylalininol) has been analyzed by x-ray diffraction in a third crystal form. Although the bent helix is quite similar to the conformations found in crystals A and B, the amount of bending is more severe with a bending angle approximate to 47 degrees, The water channel formed by the convex polar faces of neighboring helices is larger at the mouth than in crystals A and B, and the water sites have become disordered. The channel is interrupted in the middle by a hydrogen bond between the OH of Hyp(10) and the NH2 of the Gln(11) of a neighboring molecule. The side chain of Gln(11) is wrapped around the helix backbone in an unusual fashion in order that it can augment the polar side of the helix. In the present crystal C there appears to be an additional conformation for the Gln(11) side chain (with approximate to 20% occupancy) that opens the channel for possible ion passage. Structure parameters for C85H140N18O22.xH(2)O.C2H5OH are space group P2(1)2(1)2(1), a = 10.337 (2) Angstrom, b = 28.387 (7) Angstrom, c = 39.864 (11) Angstrom, Z = 4, agreement factor R = 12.99% for 3250 data observed > 3 sigma(F), resolution = 1.2 Angstrom. (C) 1994 John Wiley & Sons, Inc.