982 resultados para Proportional
Resumo:
Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.
Resumo:
A key capability of data-race detectors is to determine whether one thread executes logically in parallel with another or whether the threads must operate in series. This paper provides two algorithms, one serial and one parallel, to maintain series-parallel (SP) relationships "on the fly" for fork-join multithreaded programs. The serial SP-order algorithm runs in O(1) amortized time per operation. In contrast, the previously best algorithm requires a time per operation that is proportional to Tarjan’s functional inverse of Ackermann’s function. SP-order employs an order-maintenance data structure that allows us to implement a more efficient "English-Hebrew" labeling scheme than was used in earlier race detectors, which immediately yields an improved determinacy-race detector. In particular, any fork-join program running in T₁ time on a single processor can be checked on the fly for determinacy races in O(T₁) time. Corresponding improved bounds can also be obtained for more sophisticated data-race detectors, for example, those that use locks. By combining SP-order with Feng and Leiserson’s serial SP-bags algorithm, we obtain a parallel SP-maintenance algorithm, called SP-hybrid. Suppose that a fork-join program has n threads, T₁ work, and a critical-path length of T[subscript â]. When executed on P processors, we prove that SP-hybrid runs in O((T₁/P + PT[subscript â]) lg n) expected time. To understand this bound, consider that the original program obtains linear speed-up over a 1-processor execution when P = O(T₁/T[subscript â]). In contrast, SP-hybrid obtains linear speed-up when P = O(√T₁/T[subscript â]), but the work is increased by a factor of O(lg n).
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.
Resumo:
We analyze an infinite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are identically distributed random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or expected average profit over the infinite planning horizon. We show that a stationary (s,S,p) policy is optimal for both the discounted and average profit models with general demand functions. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period.
Resumo:
In most psychological tests and questionnaires, a test score is obtained by taking the sum of the item scores. In virtually all cases where the test or questionnaire contains multidimensional forced-choice items, this traditional scoring method is also applied. We argue that the summation of scores obtained with multidimensional forced-choice items produces uninterpretable test scores. Therefore, we propose three alternative scoring methods: a weak and a strict rank preserving scoring method, which both allow an ordinal interpretation of test scores; and a ratio preserving scoring method, which allows a proportional interpretation of test scores. Each proposed scoring method yields an index for each respondent indicating the degree to which the response pattern is inconsistent. Analysis of real data showed that with respect to rank preservation, the weak and strict rank preserving method resulted in lower inconsistency indices than the traditional scoring method; with respect to ratio preservation, the ratio preserving scoring method resulted in lower inconsistency indices than the traditional scoring method
Resumo:
The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition
Resumo:
Objetivos: evaluar la validez y confiabilidad de la versión hispana del instrumento de Tamizaje Juvenil (Encuesta de Salud Juvenil, ESJ) de la Universidad de Columbia aplicados en 2009 por el Programa de Salud Mental Juvenil de la Universidad del Rosario (UR) en el 8avo grado del Centro Educativo Integral de Colsubsidio (CEIC) en Bogotá, Colombia Metodología: Diseño observacional de evaluación de prueba diagnóstica tipo tamizaje en las dos etapas consecutivas del Programa de Tamizaje Juvenil aplicado en 183 alumnos. Evaluación de la reproducibilidad de las pruebas aplicadas a una sub muestra de 63 alumnos calculado con un muestreo aleatorizado por afijacion proporcional en un intervalo de 20 días. Resultados: el instrumento Encuesta de Salud Juvenil (ESJ) mostró una alta sensibilidad (100 %) y adecuada especificidad (89,09 %), un valor predictivo positivo del 85,88 % lo que le confiere adecuada validez. La confiabilidad y consistencia interna de la prueba son buenas, Alfa de Cronbach: 0,700, así como la concordancia de la ESJ inicial y la entrevista clínica de la segunda etapa del tamizaje (Kappa de 0.867, error estándar de 0.037 (p<0.001)). La reproducibilidad mostró un índice de Kappa de 0,645 en la sub muestra evaluada 20 días después. Conclusiones: la versión hispana del instrumento de Tamizaje Juvenil de la Universidad de Columbia tiene validez y confiabilidad adecuada para la detección de conducta suicida y signos de enfermedad mental en adolescentes.