983 resultados para Polymer Science and Rubber Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chapter 1 studies how consumers’ switching costs affect the pricing and profits of firms competing in two-sided markets such as Apple and Google in the smartphone market. When two-sided markets are dynamic – rather than merely static – I show that switching costs lower the first-period price if network externalities are strong, which is in contrast to what has been found in one-sided markets. By contrast, switching costs soften price competition in the initial period if network externalities are weak and consumers are more patient than the platforms. Moreover, an increase in switching costs on one side decreases the first-period price on the other side. Chapter 2 examines firms’ incentives to invest in local and flexible resources when demand is uncertain and correlated. I find that market power of the monopolist providing flexible resources distorts investment incentives, while competition mitigates them. The extent of improvement depends critically on demand correlation and the cost of capacity: under social optimum and monopoly, if the flexible resource is cheap, the relationship between investment and correlation is positive, and if it is costly, the relationship becomes negative; under duopoly, the relationship is positive. The analysis also sheds light on some policy discussions in markets such as cloud computing. Chapter 3 develops a theory of sequential investments in cybersecurity. The regulator can use safety standards and liability rules to increase security. I show that the joint use of an optimal standard and a full liability rule leads to underinvestment ex ante and overinvestment ex post. Instead, switching to a partial liability rule can correct the inefficiencies. This suggests that to improve security, the regulator should encourage not only firms, but also consumers to invest in security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network. The PU consists of an insulin pump for subcutaneous insulin infusion to the patient and a continuous glucose measurement system. The aforementioned devices running a user-friendly application gather patient's related information and transmit it to the PMU. The PMU consists of a diabetes data management system (DDMS), a decision support system (DSS) that provides risk assessment for long-term diabetes complications, and an insulin infusion advisory system (IIAS), which reside on a Web server. The DDMS can be accessed from both medical personnel and patients, with appropriate security access rights and front-end interfaces. The DDMS, apart from being used for data storage/retrieval, provides also advanced tools for the intelligent processing of the patient's data, supporting the physician in decision making, regarding the patient's treatment. The IIAS is used to close the loop between the insulin pump and the continuous glucose monitoring system, by providing the pump with the appropriate insulin infusion rate in order to keep the patient's glucose levels within predefined limits. The pilot version of the SMARTDIAB has already been implemented, while the platform's evaluation in clinical environment is being in progress.

Relevância:

100.00% 100.00%

Publicador: