999 resultados para Pollen Transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model that combines mass transport and surface kinetics was applied, for the first time, to the chemical vapor epitaxy of GexSi1-x. The temperature, velocity and concentration fields were calculated from the conservation equations for energy, momentum and species coupled with the boundary conditions on the growth surface which were determined by surface kinetics. The deposition rates of Si and Ge were assumed to be limited, respectively, by surface kinetics and mass transport. A theoretical relation between the initial conditions and the Ge composition in the solid was established. The calculated growth rate as well as the Ge composition in the solid and its dependence on growth temperature agree well with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognizing the computational difficulty due to the exponential behavior of the evanescent states in the calculations of the electron transmission in waveguide structures, the authors propose two transfer matrix methods and apply them to investigate the influence of the evanescent states on the electron wave propagation. The study shows that the effect of the evanescent states on the electron transport is obvious when the electron energy is close to the subband minima. The results show that the calculated transmissions are much enhanced if the evanescent states are omitted in the calculations. For the multiple-stub structures, it is found that the connecting channel length has a critical effect on the electron transmission depending on it larger or smaller than the attenuation lengths of evanescent states. Based on the study of the evanescent states, a new kind of waveguide structures which exhibit quantum modulated transistor action is proposed. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation of ballistic electron transport in a quantum wire with soft wall confinement is presented. A general method of the electron transmission calculation is proposed for structures with complicated geometries. The effects of the lateral guiding potential on ballistic transport are investigated using three soft wall confinement models and the results are compared with those obtained from the hard wall confinement approximation. It is shown that the calculated transmission coefficients are notably dependent on the lateral confining potential especially when the incident electron energy is larger than the energy of the second transverse mode. It is found that the transmission profile obtained from soft wall confinement models exhibits simpler resonance structures than that obtained from the hard wall confinement approximation. Our results suggest that only in the single-channel regime the hard wall confinement approximation can give reasonable results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical properties of annealed undoped n-type InP are studied by temperature dependent Hall effect (TDH) and current-voltage (I-V) measurements for semiconducting and semi-insulating samples, receptively. Defect band conduction in annealed semiconducting InP can be observed from TDH measurement, which is similar to those of as-grown unintentionally doped InP with low carrier concentration and moderate compensation. The I-V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown. Such a result is different from that of as-grown Fe-doped SI InP which has a nonlinear region in I-V curve explained by the theory of space charge limited current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the electron transport through a double quantum dot (QD) in the Coulomb blockade regime and reveal the phase character of the transport by embedding the double QD in a mesoscopic Aharonov-Bohm ring. It is shown that coherent transport through the double QD is preserved in spite of intradot and interdot Coulomb interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm(2)/Vs with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm(2)/Vs and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively.