994 resultados para Poisson processes
Computational fluid dynamics: advancements in technology for modeling iron and steelmaking processes
Resumo:
Computational fluid dynamics (CFD) software technology has formed the basis of many investigations into the behavior and optimization of primary iron and steelmaking processes for the last 25+ years. The objective of this contribution is to review the progress in CFD technologies over the last decade or so and how this can be brought to bear in advancing the process analysis capability of primary ferrous operations. In particular, progress on key challenges such as compute performance, fluid-structure transformation and interaction, and increasingly complex geometries are highlighted.
Resumo:
This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.
Resumo:
A design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the process control of micro and nano-electronics based manufacturing processes is presented in this paper. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to help understand how a pre-defined geometry of micro- and nano- structures can be achieved using this technology. The process performance is characterised on the basis of developed Reduced Order Models (ROM) and are generated using results from a mathematical model of the Focused Ion Beam and Design of Experiment (DoE) methods. Two ion beam sources, Argon and Gallium ions, have been used to compare and quantify the process variable uncertainties that can be observed during the milling process. The evaluations of the process performance takes into account the uncertainties and variations of the process variables and are used to identify their impact on the reliability and quality of the fabricated structure. An optimisation based design task is to identify the optimal process conditions, by varying the process variables, so that certain quality objectives and requirements are achieved and imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
A computational model for the interrelated phenomena in the process of vacuum arc remelting is analyzed and adjusted of optimal accuracy and computation time. The decision steps in this case study are offered as an example how the coupling in models of similar processes can be addressed. Results show dominance of the electromagnetic forces over buoyancy and inertia for the investigated process conditions.
Resumo:
The increasing volumes of municipal solid waste produced worldwide are encouraging the development of processes to reduce the environmental impact of this waste stream. Combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash, and fly ash/APC residues. The disposal or reuse of these residues is however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation has been shown to have a potential for improving the chemical stability and leaching behaviour of both bottom ash and fly ash/APC residues. However, the efficacy of carbonation depends on whether the method of gas application is direct or indirect. Also important are the mineralogy, chemistry and physical properties of the fresh ash, the carbonation reaction conditions such as temperature, contact time, CO2 partial pressure and relative humidity. This paper reviews the main issues pertaining to the application of accelerated carbonation to municipal waste combustion residues to elucidate the potential benefits on the stabilization of such residues and for reducing CO2 emissions. In particular, the modification of ash properties that occur upon carbonation and the CO2 sequestration potential possible under different conditions are discussed. Although accelerated carbonation is a developing technology, it could be introduced in new incinerator facilities as a "finishing step" for both ash treatment and reduction of CO2 emissions.
Resumo:
The spatial and temporal distributions of some radionuclides in effluents originating from the British Nuclear Fuels Ltd (BNFL) reprocessing plant at Windscale, which are released into the Irish Sea, have been studied in sediments at 16 sites in the salt marsh region near Newbiggin on the Esk estuary Cumbria, England. The concentration of non-conservative radionuclides in surface sediments of the area cannot be described by a single parameter, but there is a high correlation with organic C, Cu, Al and the Si : Al ratio with particle size. The preservation of the historical record of the BNFL effluents in the Esk sediments is dependent on the hydrology of the area, as it effects such processes as accretion, erosion and remixing. From the 106Ru and 210Po concentrations and the 137Cs : 134Cs ratio in the sediment profiles with depth, we have identified these processes. Sedimentation rates at sites of accretion vary between 0·5 and 3 cm year−1. However, at some sites they appear to be much higher, approximately 6 cm year−1 in the top 10 cm, but they are not consistent throughout the depth profiles. This may be a true reflection of variable accretion related to sediment type, or one which is influenced by surficial mixing. Some cores showed evidence of continuous accretion but no significant radioactivity was detected at depths below 35–40 cm, indicating an overall sedimentation rate of approximately 1·5 cm year−1 for the 25–30-year period since BNFL effluents first entered the Irish Sea.
Resumo:
A series of well stirred tank reactors has been shown to provide an adaptable laboratory analogue of a one-dimensional estuarine mixing profile which can be applied dynamically to the study of the chemistry of estuarine mixing. Simulations of the behaviour of iron and phosphate in the low salinity region of an estuary have been achieved with this system. The well documented general features of iron removal, involving rapid aggregation of river-borne colloids, were reproduced. Phosphate removal is attributable in part to the coagulation process, although specific adsorption of phosphate by colloids also appears to be significant.