984 resultados para Pleistocene fossil
Resumo:
Nd isotopes preserved in fossil fish teeth and ferromanganese crusts have become a common tool for tracking variations in water mass composition and circulation through time. Studies of Nd isotopes extracted from Pleistocene to Holocene bulk sediments using hydroxylamine hydrochloride (HH) solution yield high resolution records of Nd isotopes that can be interpreted in terms of deep water circulation, but concerns about diagenesis and potential contamination of the seawater signal limit application of this technique to geologically young samples. In this study we demonstrate that Nd extracted from the > 63 µm, decarbonated fraction of older Ocean Drilling Program (ODP) sediments using a 0.02 M HH solution produces Nd isotopic ratios that are within error of values from cleaned fossil fish teeth collected from the same samples, indicating that the HH-extractions are robust recorders of deep sea Nd isotopes. This excellent correlation was achieved for 94 paired fish teeth and HH-extraction samples ranging in age from the Miocene to Cretaceous, distributed throughout the north, tropical and south Atlantic, and composed of a range of lithologies including carbonate-rich oozes/chalks and black shales. The strong Nd signal recovered from Cretaceous anoxic black shale sequences is unlikely to be associated with ferromanganese oxide coatings, but may be derived from abundant phosphatic fish teeth and debris or organic matter in these samples. In contrast to the deep water Nd isotopic signal, Sr isotopes from HH-extractions are often offset from seawater values, suggesting that evaluation of Sr isotopes is a conservative test for the integrity of Nd isotopes in the HH fraction. However, rare earth elements (REE) from the HH-extractions and fish teeth produce distinctive middle REE bulge patterns that may prove useful for evaluating whether the Nd isotopic signal represents uncontaminated seawater. Alternatively, a few paired HH-extraction and cleaned fish teeth samples from each site of interest can be used to verify the seawater composition of the HH-extractions. The similarity between isotopic values for the HH-extraction and fish teeth illustrates that the extensive cleaning protocol applied to fish teeth samples is not necessary in typical, carbonate-rich, deep sea sediments.
Resumo:
Chemical analyses are presented for two Cretaceous clays from Noil Tobee, Timor. Mineralogical examination has shown that they consist principally of quartz, feldspar, illite and chlorite, together with minor amounts of montmorillonite. Both chemically and mineralogically the clays are very similar to the recent argillaceous deep-sea sediments of the Pacific and Indian Oceans, which confirms Molengraaff's theory (1921) that they are of deep-sea origin. Further confirmation of this theory is provided by comparison of the composition of micromanganese nodules, separated from one of these clays, with that of manganese nodules from the Pacific Ocean.
Resumo:
Organic-rich sediments (sapropels) deposited in the Mediterranean are presumed to have formed during periods of increased productivity, and/or deep water oxygen depletion, possibly including the development of sulfidic conditions (euxinia). Geochemical redox proxies (Re, Mo, Mo isotopes, V, Fe/Al, and multiple S isotopes) in 8 sapropels from the Pleistocene confirm water column euxinic conditions of varying intensity during sapropel deposition. These same proxies indicate an oxic origin for hemipelagic sediments deposited between sapropel-forming episodes. In one intensively sampled sapropel, deposited between 1.450 and 1.458 Ma, changing concentrations of organic carbon, Ba, Re, Mo, V, and Fe/Al track one another closely, reflecting coupling between water column euxinia and biological productivity. Multiple S isotope data from this sapropel suggest that the redox interface where oxidative sulfur cycling occurred was present in the sediments during hemipelagic sedimentation, but moved into the water column during sapropel deposition. Molybdenum isotopes of these 8 sapropels encompass a range of values (d98Mo = +0.2 to +1.7), but are all 98Mo-depleted relative to seawater (d98Mo = +2.3 per mil), suggesting that quantitative removal of Mo did not occur. This finding contrasts with modern Black Sea sediments. In general, Re/Mo ratios in sapropels are greater than in modern seawater, implying that the water column was not sufficiently sulfidic during sapropel-forming episodes to induce complete removal of both these elements. Surprisingly, the heaviest d98Mo values are found within hemipelagic sediments. Very few of the hemipelagic samples preserve the negative d98Mo values commonly associated with modern oxic marine sediments. Many of the hemipelagic samples also contained higher concentrations of Re and Mo than are common in oxic sediments. These features may be attributable to diffusion from the sapropels of a 98Mo-enriched component into the hemipelagic sediments.
Resumo:
Planktonic foraminifera populations were studied throughout the top 25 meters of the IODP ACEX 302 Hole 4C from the central Arctic Ocean at a resolution varying from 5cm (at the top of the record) to 10cm. Planktonic foraminifera occur in high absolute abundances only in the uppermost fifty centimetres and are dominated by the taxa Neogloboquadrina pachyderma. Except for a few intermittent layers below this level,most samples are barren of calcareous microfossils.Within the topmost sediments, Neogloboquadrina pachyderma specimens present large morphological variability in the shape and number of chambers in the finalwhorl, chamber sphericity, size, and coiling direction. Five morphotypeswere identified among the sinistral (sin.) population (Nps-1 to Nps-5), including a small form (Nps-5) that is similar to a non-encrusted normal form also previously identified in the modern Arctic Ocean watermasses. Twenty five percent of the sinistral population is made up by large specimens (Nps-2, 3, 4), with a maximal mean diameter larger than 250µm. Following observations made in peri-Arctic seas (Hillaire-Marcel et al. 2004, doi:10.1016/j.quascirev.2003.08.006), we propose that occurrence of these large-sized specimens of N. pachyderma (sin.) in the central Arctic Ocean sediments could sign North Atlantic water sub-surface penetration.
Resumo:
Past sea surface water conditions of the western Iberian Margin were reconstructed based on biomarker analyses of a marine deep sea core MD03-2699 from the Estremadura Spur north off Lisbon, providing new insights into orbital and suborbital-scale climate variability between marine isotope stage (MIS) 15 to MIS 9 (580 to 300 ka). We use biomarker-based proxy records such as the alkenone unsaturated index to estimate sea surface temperature (SST), the total alkenone concentration to reconstruct phytoplankton productivity, and terrestrial biomarkers to evaluate the continental input. The results extend the existing biomarker record, namely the SST for the Iberian Margin, back to the sixth climatic cycle (580 ka). A general trend of stable interglacials contrasts with glacial periods and glacial inceptions which are marked by high-frequency variability. Thus, several short-lived climatic coolings were identified by large SST decreases, the occurrence of ice-rafted detritus and high percentages of the tetraunsaturated alkenone C 37:4. Some of these events were extremely cold and similar in their general trends to the well-known Heinrich events of the last glaciation. We identified eight Heinrich-type events between 580 and 300 ka. The general deglaciation pattern detected between MIS 15 and MIS 9 is similar in their general trends to that characterizing the more recent climatic cycles, i.e., marked by two coolings separated by a short warming episode which may reflect the southward, northward, and southward migration of the Polar Front.
Resumo:
Sediment cores from the Western Mediterranean Sea (WMS) have been analyzed for their bulk element composition, delta18O values of planktic foraminiferal tests, and 87Sr/86Sr and 143Nd/144Nd ratios of their bulk lithogenic components. The investigated time interval comprises the last 215 kyr. Si/Al and Ti/Al ratios as well as radiogenic isotope compositions indicate changes in the provenance of the lithogenic components between glacial intervals and interglacial phases. Comparison with modern data indicates that detrital input from the northwestern and northeastern Sahara may have dominated during interglacial phases. In contrast, during glacial periods the accumulation rate of terrigenous sediment is high and changes in the sediment source areas are evident that may be related to changes in the prevailing atmospheric circulation over the basin and its source areas. A productivity reconstruction based on bio-mediated barium accumulation rates reveals increased surface productivity during glacial phases. Intervals time-equivalent to sapropel formation in the Eastern Mediterranean Sea (EMS) show no changes in surface productivity compared to the intervening intervals. Comparison of the productivity patterns between the WMS and EMS suggests a decoupling during Late Pleistocene sapropel formation and highlights the importance of more localized factors such as the freshwater drainage basin.
Resumo:
Chemical, x-ray and other data are given for todorokite, (Mn, Mg, Ca, Ba, Na, K)2.Mn5O12.3H2O, from Charco Redondo, Cuba, Farragudo, Portugal, and Hüttenberg, Austria. Additional localities at Romanèche, France, Saipan Island, Bahia, Brazil and Sterling Hill, New Jersey, are noted. Delatorreite of Simon and Straczek (1958) is identical with todorokite.