999 resultados para Plant Breeders’ Right
Resumo:
This research aimed to compare two female broiler breeder ages during the incubation period regarding management using the Analytic Hierarchy Process method (AHP). This method is characterized by the possibility of analyzing a multicriteria problem and assists a decision making. This study was carried out on a commercial hatchery located in São Paulo, Brazil. Two ages of broiler breeder (42 and 56 weeks) were compared relative to production rate. Production index data were the same in both ages and were submitted to multicriteria decision analysis using the AHP method. The results indicate that broiler breeders of 42 weeks presented better performance than those of 56 week-old. The setter phase (incubation) is more critical than the hatcher. The AHP method was efficient for this analysis and can serve as a methodological basis for future studies to improve the hatchability of broilers eggs.
Resumo:
ABSTRACT Tractor traveling speed can influence the quality of spraying depending on the application technology used. This study aimed to evaluate the droplet spectrum, the deposition and uniformity of spray distribution with different spraying systems and traveling speeds of a self-propelled sprayer in two phenological stages of the cotton plant (B9 and F13). The experimental design was randomized blocks and treatments were three spraying techniques: common flat spray tips; tilted flat jet with air induction, at 120 L ha-1; and rotary atomizer disk, 20 L ha-1, combined with four traveling speeds: 12, 15, 18 and 25 km h-1, with four replications. Spraying deposition was evaluated for both leaf surfaces from the cotton plant apex and base (stage B9) and middle part of the plant (stage F13) with a cupric marker. A laser particle analyzer also assessed the droplet spectrum. The centrifugal power spray system produces more homogeneous droplet spectrum and increased penetration of droplets into the canopy in both phenological stages. Variation on the operating conditions necessary for increased traveling speed negatively influences the pattern of spraying deposits.
Resumo:
The general goal of the present work was to study whether spatial perceptual asymmetry initially observed in linguistic dichotic listening studies is related to the linguistic nature of the stimuli and/or is modality-specific, as well as to investigate whether the spatial perceptual/attentional asymmetry changes as a function of age and sensory deficit via praxis. Several dichotic listening studies with linguistic stimuli have shown that the inherent perceptual right ear advantage (REA), which presumably results from the left lateralized linguistic functions (bottom-up processes), can be modified with executive functions (top-down control). Executive functions mature slowly during childhood, are well developed in adulthood, and decline as a function of ageing. In Study I, the purpose was to investigate with a cross-sectional experiment from a lifespan perspective the age-related changes in top-down control of REA for linguistic stimuli in dichotic listening with a forced-attention paradigm (DL). In Study II, the aim was to determine whether the REA is linguistic-stimulus-specific or not, and whether the lifespan changes in perceptual asymmetry observed in dichotic listening would exist also in auditory spatial attention tasks that put load on attentional control. In Study III, using visual spatial attention tasks, mimicking the auditory tasks applied in Study II, it was investigated whether or not the stimulus-non-specific rightward spatial bias found in auditory modality is a multimodal phenomenon. Finally, as it has been suggested that the absence of visual input in blind participants leads to improved auditory spatial perceptual and cognitive skills, the aim in Study IV was to determine, whether blindness modifies the ear advantage in DL. Altogether 180-190 right-handed participants between 5 and 79 years of age were studied in Studies I to III, and in Study IV the performance of 14 blind individuals was compared with that of 129 normally sighted individuals. The results showed that only rightward spatial bias was observed in tasks with intensive attentional load, independent of the type of stimuli (linguistic vs. non-linguistic) or the modality (auditory vs. visual). This multimodal rightward spatial bias probably results from a complex interaction of asymmetrical perceptual, attentional, and/or motor mechanisms. Most importantly, the strength of the rightward spatial bias changed as a function of age and augmented praxis due to sensory deficit. The efficiency of the performance in spatial attention tasks and the ability to overcome the rightward spatial bias increased during childhood, was at its best in young adulthood, and decreased as a function of ageing. Between the ages of 5 and 11 years probably at first develops movement and impulse control, followed by the gradual development of abilities to inhibit distractions and disengage attention. The errors especially in bilateral stimulus conditions suggest that a mild phenomenon resembling extinction can be observed throughout the lifespan, but especially the ability to distribute attention to multiple targets simultaneously decreases in the course of ageing. Blindness enhances the processing of auditory bilateral linguistic stimuli, the ability to overcome a stimulus-driven laterality effect related to speech sound perception, and the ability to direct attention to an appropriate spatial location. It was concluded that the ability to voluntarily suppress and inhibit the multimodal rightward spatial bias changes as a function of age and praxis due to sensory deficit and probably reflects the developmental level of executive functions.
Resumo:
The purpose of this master’s thesis was to study ways to increase the operating cost-efficiency of the hydrogen production process by optimizing the process parameters while, at the same time, maintaining plant reliability and safety. The literature part reviewed other hydrogen production and purification processes as well as raw material alternatives for hydrogen production. The experimental part of the master’s thesis was conducted at Solvay Chemicals Finland Oy’s hydrogen plant in spring 2012. It was performed by changing the process parameters, first, one by one, aiming for a more efficient process with clean product gas and lower natural gas consumption. The values of the process parameters were tested based on the information from the literature, process simulation and experiences of previous similar processes. The studied parameters were reformer outlet temperature, shift converter inlet temperature and steam/carbon ratio. The results show that the optimal process conditions are a lower steam/carbon ratio and reformer outlet temperature than the current values of 3.0 and 798 °C. An increase/decrease in the shift conversion inlet temperature does not affect natural gas consumption, but it has an effect on minimizing the process steam overload.
Resumo:
OBJECTIVE: To evaluate the natural healing of the rat diaphragm that suffered an extensive right penetrating injury.METHODS: Animals were submitted to an extensive penetrating injury in right diaphragm. The sample consisted of 40 animals. The variables studied were initial weight, weight 21 days after surgery; healing of the diaphragm, non-healing of the diaphragm, and herniated abdominal contents into the chest.RESULTS: Ten animals were used as controls for weight and 30 animals were operated. Two animals died during the experiment, so 28 animals formed the operated group; healing of the diaphragm occurred in 15 animals (54%), 11 other animals showed diaphragmatic hernia (39%) and in two we observed only diaphragmatic injury without hernia (7%). Among the herniated organs, the liver was found in 100% of animals, followed by the omentum in 77%, small bowel in 62%, colon in 46%, stomach in 31% and spleen in 15%. The control group and the diaphragmatic healing subgroup showed increased weight since the beginning of the study and the 21 days after surgery (p <0.001). The unhealed group showed no change in weight (p = 0.228).CONCLUSION: there is a predominance of spontaneous healing in the right diaphragm; animals in which there was no healing of the diaphragm did not gain weight, and the liver was the organ present in 100% the diaphragmatic surface in all rats with healed diaphragm or not.
Resumo:
Objective: to evaluate natural evolution of right diaphragmatic injury after the surgical removal of a portion from hemi diaphragm. Methods: the animals were submitted to a surgical removal of portion from right hemi diaphragm by median laparotomy. The sample consists of 42 animals being 2 animals from pilot project and 40 operated animals. And the variables of the study were herniation, liver protection, healing, persistent diaphragm injury, evaluation of 16 channels tomography and the variables "heart rate" and "weight". Results: we analyzed 40 mice, we had two post-operative deaths; we had 17 animals in this group suffered from herniation (42.5%) and 23 animals didn't suffer from herniation (57.5%). Analyzing the tomography as image method in the evaluation of diaphragmatic hernia, we had as a method with good sensitivity (78.6%), good specificity (90.9%), and good accuracy (86.1%) when compared to necropsy. Conclusion: there was a predominance of healing of right hemi diaphragm, the size of initial injury didn't have influence on occurrence of the liver protection or hernia in mice.
Resumo:
Chicks infected during the first two weeks of life with chicken anaemia virus (CAV) manifest clinical disease that can be avoided if the breeder hens transfer enough antibodies to their progeny. The objective of the present work was to establish the prevalence and titer of anti-CAV antibodies in some Brazilian broiler hen breeder flocks and verify in which phase of life the birds were infected. A total of 1,709 serum samples from 12 broiler hen flocks vaccinated against CAV and 64 unvaccinated flocks were analyzed for CAV antibodies with an enzyme-linked immunosorbent assay (ELISA). All non-vaccinated breeder flocks were found to be infected with CAV, with 89% of the hens tested presenting antibodies, 52% of these with titers considered high enough to protect their progeny against CAV infection. Likewise, all vaccinated hens had antibody titer to CAV capable of conferring protection to their progeny. Thus, vaccination of hens seems capable of conferring protection to chicks against clinically apparent CAV-associated disease.
Resumo:
This thesis focuses on the molecular mechanisms regulating the photosynthetic electron transfer reactions upon changes in light intensity. To investigate these mechanisms, I used mutants of the model plant Arabidopsis thaliana impaired in various aspects of regulation of the photosynthetic light reactions. These included mutants of photosystem II (PSII) and light harvesting complex II (LHCII) phosphorylation (stn7 and stn8), mutants of energy-dependent non-photochemical quenching (NPQ) (npq1 and npq4) and of regulation of photosynthetic electron transfer (pgr5). All of these processes have been extensively investigated during the past decades, mainly on plants growing under steady-state conditions, and therefore many aspects of acclimation processes may have been neglected. In this study, plants were grown under fluctuating light, i.e. the alternation of low and high intensities of light, in order to maximally challenge the photosynthetic regulatory mechanisms. In pgr5 and stn7 mutants, the growth in fluctuating light condition mainly damaged PSI while PSII was rather unaffected. It is shown that the PGR5 protein regulates the linear electron transfer: it is essential for the induction of transthylakoid ΔpH that, in turn, activates energy-dependent NPQ and downregulates the activity of cytochrome b6f. This regulation was shown to be essential for the photoprotection of PSI under fluctuations in light intensity. The stn7 mutants were able to acclimate under constant growth light conditions by modulating the PSII/PSI ratio, while under fluctuating growth light they failed in implementing this acclimation strategy. LHCII phosphorylation ensures the balance of the excitation energy distribution between PSII and PSI by increasing the probability for excitons to be trapped by PSI. LHCII can be phosphorylated over all of the thylakoid membrane (grana cores as well as stroma lamellae) and when phosphorylated it constitutes a common antenna for PSII and PSI. Moreover, LHCII was shown to work as a functional bridge that allows the energy transfer between PSII units in grana cores and between PSII and PSI centers in grana margins. Consequently, PSI can function as a quencher of excitation energy. Eventually, the LHCII phosphorylation, NPQ and the photosynthetic control of linear electron transfer via cytochrome b6f work in concert to maintain the redox poise of the electron transfer chain. This is a prerequisite for successful plant growth upon changing natural light conditions, both in short- and long-term.
Resumo:
Waste has been incinerated for energy utilization for more than a hundred years, but the harmful emissions emitted from the incineration plants did not begin to cause concern until the 1980s. Many plants were shutdown and the waste incineration plant in Kyläsaari Helsinki was one of them. In later years, new landfill regulations have increased the interest in waste incineration. During the last year, four new plants were taken into operation in Finland, Westenergy in Vaasa among them. The presence of dust has been observed indoors at Westenergy waste incineration plant. Dust is defined as particles with a diameter above 10 μm, while fine particles have a diameter smaller than 2.5 μm, ultrafine under 0.1 μm and nanoparticles under 0.05 μm. In recent years, the focus of particle health research has been changed to investigate smaller particles. Ultrafine particles have been found to be more detrimental to health than larger particles. Limit values regulating the concentrations of ultrafine particles have not been determined yet. The objective of this thesis was to investigate dust and particles present inside the Westenergy waste incineration facility. The task was to investigate the potential pollutant sources and to give recommendations of how to minimize the presence of dust and particles in the power plant. The total particle number concentrations and size distributions where measured at 15 points inside the plant with an Engine Exhaust Particle Sizer (EEPS) Spectrometer. The measured particles were mainly in the ultrafine size range. Dust was only visually investigated, since the main purpose was to follow the dust accumulation. The measurement points inside the incineration plant were chosen according to investigate exposure to visitors and workers. At some points probable leakage of emissions were investigated. The measurements were carried out during approximately one month in March–April 2013. The results of the measurements showed that elevated levels of dust and particles are present in the indoor air at the waste incineration plant. The cleanest air was found in the control room, warehouse and office. The most polluted air was near the sources that were investigated due to possible leakage and in the bottom ash hall. However, the concentrations were near measured background concentrations in European cities and no leakage could be detected. The high concentrations were assumed to be a result of a lot of dust and particles present on surfaces that had not been cleaned in a while. The main source of the dust and particles present inside the waste incineration plant was thought to be particles and dust from the outside air. Other activities in the area around the waste incineration facility are ground work activities, stone crushing and traffic, which probably are sources of particle formation. Filtration of the outside air prior entering the facility would probably save personnel and visitors from nuisance and save in cleaning and maintenance costs.
Resumo:
Plant-virus interactions are very complex in nature and lead to disease and symptom formation by causing various physiological, metabolic and developmental changes in the host plants. These interactions are mainly the outcomes of viral hijacking of host components to complete their infection cycles and of host defensive responses to restrict the viral infections. Viral genomes contain only a small number of genes often encoding for multifunctional proteins, and all are essential in establishing a viral infection. Thus, it is important to understand the specific roles of individual viral genes and their contribution to the viral life cycles. Among the most important viral proteins are the suppressors of RNA silencing (VSRs). These proteins function to suppress host defenses mediated by RNA silencing and can also serve in other functions, e.g. in viral movement, transactivation of host genes, virus replication and protein processing. Thus these proteins are likely to have a significant impact on host physiology and metabolism. In the present study, I have examined the plant-virus interactions and the effects of three different VSRs on host physiology and gene expression levels by microarray analysis of transgenic plants that express these VSR genes. I also studied the gene expression changes related to the expression of the whole genome of Tobacco mosaic virus (TMV) in transgenic tobacco plants. Expression of the VSR genes in the transgenic tobacco plants causes significant changes in the gene expression profiles. HC-Pro gene derived from the Potyvirus Y (PVY) causes alteration of 748 and 332 transcripts, AC2 gene derived from the African cassava mosaic virus (ACMV) causes alteration of 1118 and 251transcripts, and P25 gene derived from the Potyvirus X (PVX) causes alterations of 1355 and 64 transcripts in leaves and flowers, respectively. All three VSRs cause similar up-regulation in defense, hormonally regulated and different stress-related genes and down-regulation in the photosynthesis and starch metabolism related genes. They also induce alterations that are specific to each viral VSR. The phenotype and transcriptome alterations of the HC-Pro expressing transgenic plants are similar to those observed in some Potyvirus-infected plants. The plants show increased protein degradation, which may be due to the HC-Pro cysteine endopeptidase and thioredoxin activities. The AC2-expressing transgenic plants show a similar phenotype and gene expression pattern as HC-Pro-expressing plants, but also alter pathways related to jasmonic acid, ethylene and retrograde signaling. In the P25 expressing transgenic plants, high numbers of genes (total of 1355) were up-regulated in the leaves, compared to a very low number of down-regulated genes (total of 5). Despite of strong induction of the transcripts, only mild growth reduction and no other distinct phenotype was observed in these plants. As an example of whole virus interactions with its host, I also studied gene expression changes caused by Tobacco mosaic virus (TMV) in tobacco host in three different conditions, i.e. in transgenic plants that are first resistant to the virus, and then become susceptible to it and in wild type plants naturally infected with this virus. The microarray analysis revealed up and down-regulation of 1362 and 1422 transcripts in the TMV resistant young transgenic plants, and up and down-regulation of a total of 1150 and 1200 transcripts, respectively, in the older plants, after the resistance break. Natural TMV infections in wild type plants caused up-regulation of 550 transcripts and down-regulation of 480 transcripts. 124 up-regulated and 29 down-regulated transcripts were commonly altered between young and old TMV transgenic plants, and only 6 up-regulated and none of the down-regulated transcripts were commonly altered in all three plants. During the resistant stage, the strong down-regulation in translation-related transcripts (total of 750 genes) was observed. Additionally, transcripts related to the hormones, protein degradation and defense pathways, cell division and stress were distinctly altered. All these alterations may contribute to the TMV resistance in the young transgenic plants, and the resistance may also be related to RNA silencing, despite of the low viral abundance and lack of viral siRNAs or TMV methylation activity in the plants.
Resumo:
Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.
Resumo:
Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase)-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.
Resumo:
The use of narrow plant spacing in corn (Zea mays) has been suggested as a technological alternative to obtain grain yield increases, due to a better use of resources. The regular pattern could diminish intraspecific competition while favoring interspecific competition with weeds. The objective of this study was to analyze the effect of corn row spacing on weed aboveground biomass and corn grain yield. Field experiments were conducted during 2002/2003 and 2003/2004 growing seasons. Three corn hybrids with two-row width (0.70 and 0.35 m) were tested. A greater photosynthetic photon flux density (PPFD) interception with a lower weed aboveground dry matter in narrow row arrangement was obtained. Corn grain yield was greater in the narrow row arrangement than in the wide row spacing. This increase in grain yield was related to a better resource use that allows for a reduced interspecific competition. The use of reduced spatial arrangement appeared to be an interesting alternative to increase both the grain yield potential and corn suppressive ability against weeds in corn dryland production systems.
Resumo:
A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.