991 resultados para Planetary quarantine.
Resumo:
We present mid-infrared observations with the Spitzer Space Telescope of the nearby Type II-P supernova SN 2004dj at epochs of 89 - 129 days. We have obtained the first mid-IR spectra of any supernova apart from SN 1987A. A prominent [Ni II] 6.64 mu m line is observed, from which we deduce that the mass of stable nickel must be at least 2.2 x 10(-4) M-.. We also observe the red wing of the CO fundamental band. We relate our findings to possible progenitors and favor an evolved star, most likely a red supergiant, with a probable initial mass between similar to 10 and 15 M-..
Resumo:
The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of six SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II ?6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II ?6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v>~20,000 km s-1) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II ?6578 line is marginally detected in three LVG SNe, suggesting that LVGs undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only
Resumo:
We present extensive spectroscopic time series observations of the multiperiodic, rapidly rotating, delta Scuti star tau Pegasi. Information about the oscillations is contained within the patterns of line-profile variation of the star's blended absorption-line spectrum. We introduce the new technique of Doppler deconvolution with which to extract these patterns by modeling the intrinsic stellar spectrum and the broadening functions for each spectrum in the time series. Frequencies and modes of oscillation are identified from the variations using the technique of Fourier-Doppler imaging and a two-dimensional least-squares cleaning algorithm. We find a rich mode spectrum with degrees up to l = 20 and with frequencies below about 35 cycles day-1. Those modes with the largest amplitudes have frequencies that lie within a narrow band. We conclude that the observed spectrum can be explained if the modes of tau Peg propagate in the prograde direction with l ~= |m| and with frequencies that are about equal in the corotating frame of the star. We discuss the implications of these results for the prospect of delta Scuti seismology.
Resumo:
The stars 51 Pegasi and tau Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line lambda 6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and tau Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 sigma ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. tau Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.
Resumo:
We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from ˜20 d before B-band maximum to 1 yr after maximum. We show that SN 2009jf is a slowly evolving and energetic stripped-envelope SN and is likely from a massive progenitor (25-30 Msun). The large progenitor's mass allows us to explain the complete hydrogen plus helium stripping without invoking the presence of a binary companion. The SN occurred close to a young cluster, in a crowded environment with ongoing star formation. The spectroscopic similarity with the He-poor Type Ic SN 2007gr suggests a common progenitor for some SNe Ib and Ic. The nebular spectra of SN 2009jf are consistent with an asymmetric explosion, with an off-centre dense core. We also find evidence that He-rich Ib SNe have a rise time longer than other stripped-envelope SNe, however confirmation of this result and further observations are needed. This paper is based on observations with several telescopes, including NTT(184.D-1151), VLT-UT1(085.D-0750,386.D-0126), NOT, WHT, TNG, PROMPT, Ekar, Calar Alto and Liverpool Telescope.
Resumo:
An optical photometric and spectroscopic analysis of the slowly-evolving type IIn SN 2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He i 5875 line, not usually detected in type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Ha P-Cygni profile, the absorption component of which has a width of 128 km s-1. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
Resumo:
Quantifying nutrient and sediment loads in catchments is dif?cult owing to diffuse controls related to storm hydrology. Coarse sampling and interpolation methods are prone to very high uncertainties due to under-representation of high discharge, short duration events. Additionally, important low-?ow processes such as diurnal signals linked to point source impacts are missed. Here we demonstrate a solution based on a time-integrated approach to sampling with a standard 24 bottle autosampler con?gured to take a sample every 7 h over a week according to a Plynlimon design. This is evaluated with a number of other sampling strategies using a two-year dataset of sub-hourly discharge and phosphorus concentration data. The 24/7 solution is shown to be among the least uncertain in estimating load (inter-quartile range: 96% to 110% of actual load in year 1 and 97% to 104% in year 2) due to the increased frequency raising the probability of sampling storm events and point source signals. The 24/7 solution would appear to be most parsimonious in terms of data coverage and certainty, process signal representation, potential laboratory commitment, technology requirements and the ability to be widely deployed in complex catchments.
Resumo:
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography-mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gamma-proteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
Resumo:
Warming could strongly stabilize or destabilize populations and food webs by changing the interaction strengths between predators and their prey. Predicting the consequences of warming requires understanding how temperature affects ingestion (energy gain) and metabolism (energy loss). Here, we studied the temperature dependence of metabolism and ingestion in laboratory experiments with terrestrial arthropods (beetles and spiders). From this data, we calculated ingestion efficiencies (ingestion/metabolism) and per capita interaction strengths in the short and long term. Additionally, we investigated if and how body mass changes these temperature dependencies. For both predator groups, warming increased metabolic rates substantially, whereas temperature effects on ingestion rates were weak. Accordingly, the ingestion efficiency (the ratio of ingestion to metabolism) decreased in all treatments. This result has two possible consequences: on the one hand, it suggests that warming of natural ecosystems could increase intrinsic population stability, meaning less fluctuations in population density; on the other hand, decreasing ingestion efficiencies may also lead to higher extinction risks because of starvation. Additionally, predicted long-term per capita interaction strengths decreased with warming, which suggests an increase in perturbation stability of populations, i.e., a higher probability of returning to the same equilibrium density after a small perturbation. Together, these results suggest that warming has complex and potentially profound effects on predator-prey interactions and food-web stability.
Resumo:
In this paper, we present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for the complicated iron-peak ion Cr II. We consider specifically the allowed lines for transitions from the 3d(5) and 3d(4)4s even parity configuration states to the 3d(4)4p odd parity configuration levels. The parallel suite of R-Matrix packages, RMATRX II, which have recently been extended to allow for the inclusion of relativistic effects, were used to compute the collision cross sections. A total of 108 LS pi/280 J pi levels from the basis configurations 3d(5), 3d(4)4s, and 3d(4)4p were included in the wavefunction representation of the target including all doublet, quartet, and sextet terms. Configuration interaction and correlation effects were carefully considered by the inclusion of seven more configurations and a pseudo-corrector (4d) over bar type orbital. The 10 configurations incorporated into the Cr II model thus listed are 3d(5), 3d(4)4s, 3d(4)4p, 3d(3)4s(2), 3d(3)4p(2), 3d(3)4s4p, 3d(4)(4d) over bar, 3d(3)4s (4d) over bar, 3d(3)4p (4d) over bar, and 3d(3)(4d) over bar (2), constituting the largest Cr II target model considered to date in a scattering calculation. The Maxwellian averaged effective collision strengths are computed for a wide range of electron temperatures 2000-100,000 K which are astrophysically significant. Care has been taken to ensure that the partial wave contributions to the collision strengths for these allowed lines have converged with "top-up" from the Burgess-Tully sum rule incorporated. Comparisons are made with the results of Bautista et al. and significant differences are found for some of the optically allowed lines considered.
Resumo:
A cryptotephra layer from the eruption of Hekla in 1947 has recently been discovered in Irish peatlands. This tephra layer represents the most recent deposition of volcanic ash in the UK prior to the eruption of Eyjafjallajökull in 2010. Here we examine the concentration and geochemistry of the Hekla 1947 tephra in 14 peat profiles from across Northern Ireland. Electron probe microanalysis of individual tephra shards (n?=?91) reveals that the tephra is of dacitic–andesitic geochemistry and is highly similar to the Hekla 1510 tephra, although spheroidal carbonaceous particle profiles can be used for successful discrimination of the two layers. The highest concentrations of Hekla 1947 are found in western sites, probably reflecting the pathway of the ash fall event due to the prevailing wind direction. Comparable tephra concentrations from two cores (1?km apart) from a single bog and from nearby sites may suggest that tephra shard concentrations in peat profiles reflect ash fallout densities across a specific region, rather than site-specific factors associated with peatlands. This paper firmly establishes Hekla 1947 as a useful chronostratigraphic marker for the twentieth century, although within a restricted zone.
Resumo:
We have searched for HDS emission in a small number of hot cores. Using observations of (H2S)-S-34, we have derived upper limits to the [HDS]/[H2S] abundance ratio. The upper limits, which are close to 10(-3) can be interpreted in two ways, depending on whether grain surface reactions contribute to the formation of H2S. If grains do not dominate, then the H2S observed is formed in hot, post-shocked gas and a ratio close to the cosmic [D]/[H] ratio is expected for [HDS]/[H2S]. This scenario is consistent with our upper limits and with the relatively low abundance ratio found for [HDO]/[H2O] in hot cores but does not seem to account for all of the molecular [D]/[H] ratios observed in hot cores. If grains do dominate the formation of HBS, then the observed upper limit to the ratio is consistent with the formation of 'hot core ices' at a temperature of 60-80 K, close to the temperature at which cometary ices are thought to form.