998 resultados para Picturesque, The
Resumo:
Purpose: The aim of this study was to verify the influence of aerobic fitness (VO(2)max) on internal training loads, as measured by the session rating of perceived exertion (session-RPE) method. Methods: Nine male professional outfield futsal players were monitored for 4 wk of the in-season period with regards to the weekly accumulated session-RPE, while participating in the same training sessions. Single-session-RPE was obtained from the product of a 10-point RPE scale and the duration of exercise. Maximal oxygen consumption was determined during an incremental treadmill test. Results: The average training load throughout the 4 wk period varied between 2,876 and 5,035 arbitrary units. Technical-tactical sessions were the predominant source of loading. There was a significant correlation between VO(2)max (59.6 +/- 2.5 mL.kg(-1).min(-1)) and overall training load accumulated over the total period (r = -0.75). Conclusions: The VO(2)max plays a key role in determining the magnitude of an individual's perceived exertion during futsal training sessions.
Resumo:
This study investigated if there were acute interference effects of strength exercises on subsequent continuous and intermittent 5Km aerobic exercises. Eleven physically active males (23.1 +/- 3.1 yrs, 1.75 +/- 0.07 m, 70.5 +/- 8.8 kg, and 58.2 +/- 8.3 VO(2)max) performed the following experimental sessions: A) 5 sets of 5 RM on the leg press followed by a 5km run performed continuously (average velocity of the first and second ventilatory thresholds, nu Delta 50), B) 5 sets of 5 RM on the leg press followed by a 5km run performed intermittently (1 min run at the nu VO(2)max : 1 min of rest); C) 2 sets of 15 RM on the leg press followed by a 5km continuous run; and D) 2 sets of 15 RM on the leg press followed by a 5km intermittent run. Heart rate, blood lactate concentration, rate of perceived exertion, and VO(2) at the first and the fifth km were considered for statistical purposes. There were no significant effects of both strength bouts on any of the variables associated with endurance performance (p > 0.05). It seems that both maximum and strength endurance bouts do not acutely impair aerobic performance.
Resumo:
Youth swimming performance may be influenced by anthropometric, physiology and technical factors. The present paper examined the role of these factors in performance of 100m freestyle in swimmers 12-14 years of age (n = 24). Multiple regression analysis (forward method) was used to examine the variance of the 100 meters front crawl. Anaerobic power, swimming index and critical speed explained 88% (p < .05) of the variance in the average speed of 100 meters front crawl among young male pubertal swimmers. To conclude, performance of young swimmers in the 100 meters front crawl is determined predominantly by physiological factors and swimming technique.
Association between neuromuscular tests and kumite performance on the Brazilian Karate National Team
Resumo:
The aim of this study was to verify the relationship of strength and power with performance on an international level karate team during official kumite simulations. Fourteen male black belt karate athletes were submitted to anthropometric data collection and then performed the following tests on two different days: vertical jump test, bench press and squat maximum dynamic strength (1RM) tests. We also tested power production for both exercises at 30 and 60% 1RM and performed a kumite match simulation. Blood samples were obtained at rest and immediately after the kumite matches to measure blood lactate concentration. Karate players were separated by performance (winners vs. defeated) on the kumite matches. We found no significant differences between winners and defeated for strength, vertical jump height, anthropometric data and blood lactate concentration. Interestingly, winners were more powerful in the bench press and squat exercises at 30% 1RM. Maximum strength was correlated with absolute (30% 1RM r = 0.92; 60% 1RM r = 0.63) and relative power (30% 1RM r = 0.74; 60% 1RM r = 0.11, p > 0.05) for the bench press exercise. We concluded that international level karate players' kumite match performance are influenced by higher levels of upper and lower limbs power production.
Resumo:
Blends of milk fat and canola oil (MF:CNO) were enzymatically interesterified (EIE) by Rhizopus oryzne lipase immobilized on polysiloxane-polyvinyl alcohol (SiO(2)-PVA) composite, in a solvent-free system. A central composite design (CCD) was used to optimize the reaction, considering the effects of different mass fractions of binary blends of MF:CNO (50:50, 65:35 and 80:20) and temperatures (45, 55 and 65 degrees C) on the composition and texture properties of the interesterified products, taking the interesterification degree (ID) and consistency (at 10 degrees C) as response variables. For the ID variable both mass fraction of milk fat in the blend and temperature were found to be significant, while for the consistency only mass fraction of milk fat was significant. Empiric models for ID and consistency were obtained that allowed establishing the best interesterification conditions: blend with 65 % of milk fat and 35 %, of canola oil, and temperature of 45 degrees C. Under these conditions, the ID was 19.77 %) and the consistency at 10 degrees C was 56 290 Pa. The potential of this eco-friendly process demonstrated that a product could be obtained with the desirable milk fat flavour and better spreadability under refrigerated conditions.
Resumo:
Background: Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results: Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion: The low recalcitrance of pith cells correlated with the low UV-absorbance values seen in parenchyma cells. Chlorite treatment of pith cells did not enhance cellulose conversion. By contrast, application of the same treatment to rind cells led to significant removal of hydroxycinnamic acids and lignin, resulting in marked enhancement of cellulose conversion by cellulases.
Resumo:
Transport properties and magnetization measurements of the K(x)MoO(2-delta) (0 <= x <= 0.25) compound are reported. The compound crystallizes in the oxygen deficient MoO(2) monoclinic structure with potassium atoms occupying interstitial positions. An unconventional metallic behavior with power-law temperature dependence is related to a magnetic ordering. Superconducting transition with small volume fraction is also observed near 7 K for a sample with low potassium composition.
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
In recent years, the Me-Si-B (Me-metal) ternary systems have received considerable attention aiming at the development of high-temperature structural materials. Assuming that any real application of these materials will rely on multicomponent alloys, as is the case of Ni-base superalloys, phase equilibria data of these systems become very important. In this work, results are reported on phase equilibria in the V-Si-B system, and are summarized in the form of an isothermal section at 1600 A degrees C for the V-VSi(2)-VB region. Several alloys of different compositions were prepared via arc melting and then heat-treated at 1600 A degrees C under high vacuum. All the materials in both as-cast and heat-treated conditions were characterized through x-ray diffraction, scanning electron microscopy, and selected alloys via wavelength dispersive spectroscopy. A negligible solubility of B in the V(3)Si, V(5)Si(3) (T(1)), and V(6)Si(5) phases as well as of Si in V(3)B(2) and VB phases was noted. Two ternary phases presenting the structures known as T(2) (Cr(5)B(3)-prototype) and D8(8) (Mn(5)Si(3)-prototype) were observed in both as-cast and heat-treated samples. It is proposed that at 1600 A degrees C the homogeneity range of T(2) extends approximately from 5 at.% to 12 at.% Si at constant vanadium content and the composition of D8(8) phase is close to V(59.5)Si(33)B(7.5) (at.%).
Resumo:
The aim of this work was to verify the stability of the beta Co(2)Si phase in the Co-Si system. The samples were produced via arc-melting and characterized through Scanning Electron Microscopy (SEM) and Differential Thermal Analysis (DTA). The results have confirmed the stability of the beta Co(2)Si phase, however, a modification of the shape of beta CoSi phase field is proposed in order to fully explain the results.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
Background: Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks. Results: cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology. Conclusions: We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.
Resumo:
Purpose: Potentially Inappropriate Medications (PIM) use in elderly people may be responsible for the development of Adverse Drug Reaction (ADR) which, when severe, leads to hospital admissions. Objectives: to estimate the prevalence of elderly who had used PIM before being admitted to hospital and to identify the risk factors and the hospitalizations related to ADR arising from PIM. Methods: A descriptive and cross-sectional study was performed in the internal medicine ward of a teaching hospital (Brazil), in 2008. With the aid of a validated form, patients aged >= 60 years, with length of hospital stay >= 24 hours, were interviewed about drugs taken prior to the hospital admission and the complaints/reasons for hospitalization. Results: 19.1% (59/308) of older patients had taken PIM before hospital admission and in 4.9%; there were a causal relation between the PIM taken and the complaint reported. PIM responsible for admissions were: amiodarone, amitriptyline, cimetidine, clonidine, diazepam, digoxin, estrogen, fluoxetine, lorazepam, short-acting nifedipine and propranolol. 47.0% of the clinical manifestations of PIM-related ADR were: dizziness, fatigue, digoxin toxicity and erythema. Only polypharmacy was detected as a risk factor for the occurrence of ADR of PIM (p = 0.02). Conclusion: PIM use in elderly people is not a risk factor for ADR-related hospital admission. Probably, severe ADR, which lead to hospitalizations of older people, can be explained by idiosyncratic response or the predisposition of these patients to develop adverse drug events, whether or not drugs are classed as PIM.
Resumo:
This paper presents a, simple two dimensional frame formulation to deal with structures undergoing large motions due to dynamic actions including very thin inflatable structures, balloons. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions. Velocity, acceleration and strain are achieved directly from positions, not. displacements, characterizing the novelty of the proposed technique. A non-dimensional space is created and the deformation function (change of configuration) is written following two independent mappings from which the strain energy function is written. The classical New-mark equations are used to integrate time. Dumping and non-conservative forces are introduced into the mechanical system by a rheonomic energy function. The final formulation has the advantage of being simple and easy to teach, when compared to classical Counterparts. The behavior of a bench-mark problem (spin-up maneuver) is solved to prove the formulation regarding high circumferential speed applications. Other examples are dedicated to inflatable and very thin structures, in order to test the formulation for further analysis of three dimensional balloons.
Resumo:
The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.