999 resultados para Photosynthetic activity
Resumo:
We report the identification of a 48kDa antigen targeted by antibodies which inhibit Plasmodium falciparum in vitro growth by cooperation with blood monocytes in an ADCI assay correlated to the naturally acquired protection. This protein is located on the surface of the merozoite stage of P. falciparum, and is detectable in all isolates tested. Epidemiological studies demonstrated that peptides derived from the amino acid sequence of MSP-3 contain potent B and T-cell epitopes recognized by a majority of individuals living in endemic areas. Moreover human antibodies either purified on the recombinant protein, or on the synthetic peptide MSP-3b, as well as antibodies raised in mice, were all found to promote parasite killing mediated by monocytes.
Resumo:
The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.
Resumo:
The use of quetiapine for treatment of bipolar disorders at a higher dosage than the licensed range is not unusual in clinical practice. Quetiapine is predominantly metabolised by cytochrome P450 3A4 (CYP3A4) and to a lesser extent by CYP2D6. The large interindividual variability of those isozyme activities could contribute to the variability observed in quetiapine dosage. The aim of the present study is to evaluate if the use of high dosages of quetiapine in some patients, as compared to patients treated with a dosage in the licensed range (up to 800 mg/day), could be explained by a high activity of CYP3A4 and/or of CYP2D6. CYP3A4 activities were determined using the midazolam metabolic ratio in 21 bipolar and schizoaffective bipolar patients genotyped for CYP2D6. 9 patients were treated with a high quetiapine dosage (mean ± SD, median; range: 1467 ± 625, 1200; 1000-3000 mg/day) and 11 with a normal quetiapine dosage (433 ± 274, 350; 100-800 mg/day). One patient in the high dose and one patient in the normal dose groups were genotyped as CYP2D6 ultrarapid metabolizers. CYP3A4 activities were not significantly different between the two groups (midazolam metabolic ratio: 9.4 ± 8.2; 6.2; 1.7-26.8 vs 3.9 ± 2.3; 3.8; 1.5-7.6, in the normal dose group as compared to the high dose group, respectively, NS). The use of high quetiapine dosage for the patients included in the present study cannot be explained by variations in pharmacokinetics parameters such as a high activity of CYP3A4 and/or of CYP2D6.
Resumo:
Twenty patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) meeting the EFNS/PNS criteria were examined in order to assess differences/similarities between the various grading systems according to CIDP disease activity status (CDAS). A principal component (PC) analysis and the correlations between the following scores were performed: Neurological Symptom Score; MRC sum score; Neurological Impairment Score; Hammersmith Functional Motor Scale; Inflammatory Neuropathy Cause and Treatment (INCAT) Sensory Sum Score; Overall Disability Sum Score; INCAT Disability Score; Rasch-built Overall Disability Scale. Our analysis outlined two main sets of scales, with high influence in the top two PCs. The first PC that best explained the variability within the cohort consisted of CDAS, general disability scores and motor scores; these parameters were also strongly correlated amongst each other. The second PC explained less the variability and consisted mainly of sensory scores and disease duration; these parameters did not correlate with the scores of the first PC or with the CDAS. Our findings suggest separating screening for motor and sensory deficits when evaluating CIDP patients, as only the motor scores correlate with CDAS.
Resumo:
Glucose-sensing neurons in the brainstem participate in the regulation of energy homeostasis but have been poorly characterized because of the lack of specific markers to identify them. Here we show that GLUT2-expressing neurons of the nucleus of the tractus solitarius form a distinct population of hypoglycemia-activated neurons. Their response to low glucose is mediated by reduced intracellular glucose metabolism, increased AMP-activated protein kinase activity, and closure of leak K(+) channels. These are GABAergic neurons that send projections to the vagal motor nucleus. Light-induced stimulation of channelrhodospin-expressing GLUT2 neurons in vivo led to increased parasympathetic nerve firing and glucagon secretion. Thus GLUT2 neurons of the nucleus tractus solitarius link hypoglycemia detection to counterregulatory response. These results may help identify the cause of hypoglycemia-associated autonomic failure, a major threat in the insulin treatment of diabetes.
Resumo:
Background: Mucosal healing in ulcerative colitis (UC) is reported to be associated with favourable clinical outcomes such as reduced hospitalization and surgery rates. Activity monitoring by endoscopy has its shortcomings due to invasiveness, costs, and potential patient discomfort. Data on the correlation of noninvasive biomarkers with endoscopic severity in UC are scarce. Aim: to evaluate the correlation between endoscopic activity according to the modified Baron Index and fecal calprotectin, C-reactive protein (CRP), blood leukocytes, and the Lichtiger Index (clinical score). Methods: UC patients with leftsided and extensive colitis undergoing complete colonoscopy were prospectively enrolled and scored clinically and endoscopically. Fecal and blood samples were analyzed in UC patients (in a blinded fashion) and controls. The modified Baron score describes the following 5 endoscopic conditions: 0 = normal, 1 = granular mucosa, edema, 2 = friable mucosa but no spontaneous bleeding, 3 = microulcerations with spontaneous bleeding, 4 = gross ulceration, denuded mucosa. Results: We enrolled 228 UC patients (mean age 41 ± 13 years, 39 female) and 52 healthy controls. Disease was located in 40% in the left colon, 21% had an extensive and 39% a pancolitis. Endoscopic disease activity correlated best with fecal calprotectin (Spearman's rank correlation coefficient r = 0.821), followed by the Lichtiger Index (r = 0.682), CRP (r = 0.556), and blood leukocytes (r = 0.401). Fecal calprotectin was the only marker that could discriminate between different grades of endoscopic activity (grade 0, 25 ± 11 μg/g; grade 1, 44 ± 34 μg/g; grade 2, 111 ± 74 μg/g; grade 3, 330 ± 332 μg/g; grade 4, 659 ± 319 μg/g; P = 0.002 for discriminating grade 0 vs. 1, and P < 0.001 for discriminating grade 1 vs. 2, grade 2 vs. 3, and grade 3 vs. 4). Fecal calprotectin had the highest overall accuracy (91%) to detect endoscopically active disease (modified Baron Index ≥ 2), followed by the Lichtiger Index score of ≥ 4 (77%), CRP > 5 mg/L (69%) and blood leukocytosis (58%). Conclusions: Fecal calprotectin better correlated with endoscopic disease activity than clinical activity, CRP, and blood leukocytes. The strong correlation with endoscopic disease activity suggests that FC represents a useful biomarker for noninvasive monitoring of disease activity in UC patients.
Resumo:
Unlike other tumor necrosis factor family members, the cytotoxic ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2L contains an unpaired cysteine residue (Cys(230)) in its receptor-binding domain. Here we show that the biological activity of both soluble recombinant TRAIL and cell-associated, full-length TRAIL is critically dependent on the presence of Cys(230). Mutation of Cys(230) to alanine or serine strongly affected its ability to kill target cells. Binding to its receptors was decreased by at least 200-fold, and the stability of its trimeric structure was reduced. In recombinant TRAIL, Cys(230) was found engaged either in interchain disulfide bridge formation, resulting in poorly active TRAIL, or in the chelation of one zinc atom per TRAIL trimer in the active, pro-apoptotic form of TRAIL.
Resumo:
The influence of environmental and biological factors on the efficacy of Bacillus thuringiensis serovar israelensis and B. sphaericus as mosquito larvicides are reviewed. The importance of strain dependence, cultivating media/methods, mosquito species/specificity, formulations and their relation to mosquito feeding habits, as well as temperature, solar exposure, larval density and concomitant presence of other aquatic organisms are addressed with reference to the present status of knowledge in Brazil.
Resumo:
APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.
Resumo:
The compound Ro-15.5458/000, derivative in the class of 9-acridanone-hydrazones, was found to be effective against Schistosoma mansoni in mice, killing almost all the skin schistosomules (24 hr after infection), when administered at the dose of 100 mg/kg. In experiments carried out with Cebus monkeys, the drug was shown to be fully effective at 25 mg/kg, 7 days after infection. These data, associated with the good results obtained earlier at the post-postural phase of schistosomiasis, allow the inference that this promising compound may be important in the set of antischistosomal drugs, depending on further toxicological and clinical tests.
Resumo:
During the first steps of reverse transcription of the retroviral genome, sequences present at the extremities of the RNA are used to reconstitute a host cell PolII promoter. The assembly of the promoter occurs by template switching, which takes advantage of a direct repeat at the ends of the RNA molecule. These steps are catalysed by the viral reverse transcriptase, which carries an intrinsic RNaseH activity that is probably also involved therein. To study the role of the RNaseH activity in this first template-switching event, an in vitro system has been developed based on primer extensions of synthetic RNAs. When an RNA was reverse transcribed with wild-type reverse transcriptase in the presence of a second RNA the 3' part of which was repeated at the 5' end of the first one, extension products could be observed corresponding to a chimeric cDNA comprising both RNA species. This template switching could not be detected when a mutant reverse transcriptase lacking the RNaseH activity was used. The results show that the RNaseH activity is needed to remove the 5' RNA sequences from the cDNA:RNA hybrid thereby enabling its translocation to another RNA containing an appropriate complementary target sequence.
Resumo:
Aedes albifasciatus is an important common mosquito in Central Argentina. Its a confirmed vector of the Western Equine Encephalitis and is responsible for loss of milk production in dairy cattle during peak populations. This paper reports the flight activity pattern of Ae. albifasciatus for different seasons, in the southern coast of the Mar Chiquita Lake (Central Argentina). Data were collected by sampling two sites between 1992 and 1993 with CDC traps and human-bait captures. Adult mosquito population density, estimated by CDC trapping and human-bait, were highly correlated. However, when compared to other species, the proportion of Ae. albifasciatus was higher in human-bait collections. Adult female populations were active only when temperature were higher than 6§C. Two daily biting peaks were observed (dusk and dawn) during the spring, summer and autumn, and only one peak during winter (around 15:00 pm). Adult abundance was significantly correlated (R²= 0.71; p<0.01) with temperature and illumination.
Resumo:
A study of the phagoinhibitor and anti-moulting activities of the Brazilian Melia azedarach, collected in the state of Rio de Janeiro, Brazil, allowed the isolation of four lignanes identified as pinoresinol, bis-epi-pinoresinol, the hemicetal and the diacid. These substances are devoid of anti-moulting activity.
Resumo:
The hemolytic activity of live isolates and clones of Trichomonas vaginalis and Tritrichomonas foetus was investigated. The isolates were tested against human erythrocytes. No hemolytic activity was detected by the isolates of T. foetus. Whereas the isolates of T. vaginalis lysed erythrocytes from all human blood groups. No hemolysin released by the parasites could be detected. Our preliminary results suggest that hemolysis depend on the susceptibility of red cell membranes to destabilization and the intervention of cell surface receptors as a mechanism of the hemolytic activity. The mechanism could be subject to strain-species-genera specific variation of trichomonads. The hemolytic activity of T. vaginalis is not due to a hemolysin or to a product of its metabolism. Pretreatment of trichomonads with concanavalin A reduced levels of hemolysis by 40%.