993 resultados para Photospheric velocity fields
Resumo:
This paper exposes the strengths and weaknesses of the recently proposed velocity-based local model (LM) network. The global dynamics of the velocity-based blended representation are directly related to the dynamics of the underlying local models, an important property in the design of local controller networks. Furthermore, the sub-models are continuous-time and linear providing continuity with established linear theory and methods. This is not true for the conventional LM framework, where the global dynamics are only weakly related to the affine sub-models. In this paper, a velocity-based multiple model network is identified for a highly nonlinear dynamical system. The results show excellent dynamical modelling performances, highlighting the value of the velocity-based approach for the design and analysis of LM based control. Three important practical issues are also addressed. These relate to the blending of the velocity-based local models, the use of normalised Gaussian basis functions and the requirement of an input derivative.
Resumo:
A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.
Resumo:
Spectroscopic measurements of NOAA AR 10871, obtained with the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument on 2006 April 12, reveal velocity oscillations in the He II 303.8 angstrom emission line formed at T approximate to 5; 10(4) K. The oscillations appear to arise in a bright active region loop arcade about 25 '' wide which crosses the EUNIS slit. The period of these transition region oscillations is 26 +/- 4 s, coupled with a velocity amplitude of +/- 10 km s(-1), detected over four complete cycles. Similar oscillations are observed in lines formed at temperatures up to T approximate to 4; 10(5) K, but we find no evidence for the coupling of these velocity oscillations with corresponding phenomena in the corona. We interpret the detected oscillations as originating from an almost purely adiabatic plasma, and infer that they are generated by the resonant transmission of MHD waves through the lower active region atmospheres. Through the use of seismological techniques, we establish that the observed velocity oscillations display wave properties most characteristic of fast body global sausage modes.
Resumo:
We present Ca it K and Ti it optical spectra of early-type stars taken mainly from the ultraviolet and visual echelle spectrograph (LIVES) Paranal Observatory Project, plus H 1 21-cm spectra, from the Vila-Elisa and Leiden-Dwingeloo Surveys, which are employed to obtain distances to intermediate- and high-velocity clouds (IHVCs). H I emission at a velocity of -117 km s(-1) towards the sightline HD 30677 (l, b = 190 degrees.2, -22 degrees.2) with column density -1.7 x 10(19) cm(-2) has no corresponding Ca Pi K absorption in the LIVES spectrum, which has a signal-to-noise ratio (S/N) of 610 per resolution element. The star has a spectroscopically determined distance of 2.7 kpc, and hence sets this as a firm lower distance limit towards Anti-Centre cloud ACII. Towards another sightline (HD 46185 with 1, b = 222 0, -10 degrees.1), H1 at a velocity of +122 km s(-1) and column density of 1.2 x 10(19) cm(-2) is seen. The corresponding Ca Pi K spectrum has a S/N of 780, although no absorption is observed at the cloud velocity. This similarly places a firm lower distance limit of 2.9 kpc towards this parcel of gas that may be an intermediate-velocity (IV) cloud. The lack of IV Ca it absorption towards HD 196426 (1, b = 45 degrees.8, -23 degrees.3) at a S/N of 500 reinforces a lower distance limit of -700 pc towards this part of complex gp, where the H I column density is 1.1 x 1019 cm(-2) and velocity is +78 km s(-1). Additionally, no IV Cart is seen in absorption in the spectrum of HD 19445, which is strong in H I with a column density of 8 x 10(19) cm(-2) at a velocity of - -42 km s(-1), placing a firm although uninteresting lower distance limit of 39 pc to this part of IV South. Finally, no high-velocity Call K absorption is seen towards HD 115363 (l, b = 306.0,-1.0) at a S/N of 410, placing a lower distance of -3.2 kpc towards the HVC gas at velocity of - +224 km s(-1) and WE column density of 5.2 x 10(19) cm(-2). This gas is in the same region of the sky as complex WE (Wakker 2001), but at higher velocities. The non-detection of Ca it K absorption sets a lower distance of -3.2 kpc towards the HVC, which is unsurprising if this feature is indeed related to the Magellanic System.
Resumo:
Two sequences of solar images obtained by the Transition Region and Coronal Explorer in three UV passbands are studied using wavelet and Fourier analysis and compared to the photospheric magnetic flux measured by the Michelson Doppler Interferometer on the Solar Heliospheric Observatory to study wave behavior in differing magnetic environments. Wavelet periods show deviations from the theoretical cutoff value and are interpreted in terms of inclined fields. The variation of wave speeds indicates that a transition from dominant fast-magnetoacoustic waves to slow modes is observed when moving from network into plages and umbrae. This implies preferential transmission of slow modes into the upper atmosphere, where they may lead to heating or be detected in coronal loops and plumes.
Resumo:
Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.
Resumo:
Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.
Resumo:
We correct the estimates of the dispersions in the rotational velocities for early-type stars in our Galaxy (Dufton et al. 2006, A&A, 457, 265) and the Magellanic Clouds (Hunter et al. 2008, A&A, 479, 541). The corrected values are pi(1/4) (i.e. approximately 33%) larger than those published in the original papers.
Resumo:
In this paper we present the application of Hidden Conditional Random Fields (HCRFs) to modelling speech for visual speech recognition. HCRFs may be easily adapted to model long range dependencies across an observation sequence. As a result visual word recognition performance can be improved as the model is able to take more of a contextual approach to generating state sequences. Results are presented from a speaker-dependent, isolated digit, visual speech recognition task using comparisons with a baseline HMM system. We firstly illustrate that word recognition rates on clean video using HCRFs can be improved by increasing the number of past and future observations being taken into account by each state. Secondly we compare model performances using various levels of video compression on the test set. As far as we are aware this is the first attempted use of HCRFs for visual speech recognition.