982 resultados para Pensamento Lean
Resumo:
Background: Leptin-deficient mice (Lep(ob)/Lep(ob), also known as ob/ob) are of great importance for studies of obesity, diabetes and other correlated pathologies. Thus, generation of animals carrying the Lep(ob) gene mutation as well as additional genomic modifications has been used to associate genes with metabolic diseases. However, the infertility of Lep(ob)/Lep(ob) mice impairs this kind of breeding experiment. Objective: To propose a new method for production of Lep(ob)/Lep(ob) animals and Lep(ob)/Lep(ob)-derived animal models by restoring the fertility of Lep(ob)/Lep(ob) mice in a stable way through white adipose tissue transplantations. Methods: For this purpose, 1 g of peri-gonadal adipose tissue from lean donors was used in subcutaneous transplantations of Lep(ob)/Lep(ob) animals and a crossing strategy was established to generate Lep(ob)/Lep(ob)-derived mice. Results: The presented method reduced by four times the number of animals used to generate double transgenic models (from about 20 to 5 animals per double mutant produced) and minimized the number of genotyping steps (from 3 to 1 genotyping step, reducing the number of Lep gene genotyping assays from 83 to 6). Conclusion: The application of the adipose transplantation technique drastically improves both the production of Lep(ob)/Lep(ob) animals and the generation of Lep(ob)/Lep(ob)-derived animal models. International Journal of Obesity (2009) 33, 938-944; doi: 10.1038/ijo.2009.95; published online 16 June 2009
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
The purpose of this study was to test the hypothesis that in obese children: 1) Ventilatory efficiency (VentE) is decreased during graded exercise; and 2) Weight loss through diet alone (D) improves VentE, and 3) diet associated with exercise training (DET) leads to greater improvement in VentE than by D. Thirty-eight obese children (10 +/- 0.2 years; BMI > 95(th) percentile) were randomly divided into two Study groups: D (n=17; BMI = 30 +/- 1 kg/m(2)) and DET (n = 21; 28 +/- 1 kg/m(2)). Ten lean children were included in a control group (10 +/- 0.3 years; 17 +/- 0.5 kg/m(2)). All children performed maximal treadmill testing with respiratory gas analysis (breath-by-breath) to determine the ventilatory anaerobic threshold (VAT) and peak oxygen consumption (VO(2) peak). VentE was determined by the VE/VCO(2) method at VAT. Obese children showed lower VO(2) peak and lower VentE than controls (p < 0.05). After interventions, all obese children reduced body weight (p < 0.05). D group did not improve in terms of VO(2) peak or VentE (p > 0.05). In contrast, the DET group showed increased VO(2) peak (p = 0.01) and improved VentE(Delta VE/VCO(2) = -6.1 +/- 0.9; p = 0.01). VentE is decreased in obese children, where weight loss by means of DET, but not D alone, improves VentE and cardiorespiratory fitness during graded exercise.
Resumo:
Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.
Resumo:
Background Et aims: To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal. macrophages, hematopoiesis and nutritional status of mice. Methods: Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. Results: The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P < 0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well. as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal. macrophages obtained from the -GLN group (P < 0.05). Conclusion: These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
[beta]-Hydroxy [beta]-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is one of the latest dietary supplements promoted to enhance gains in strength and lean body mass associated with resistance training. Unlike anabolic hormones that induce muscle hypertrophy by increasing muscle protein synthesis, HMB is claimed to influence strength and lean body mass by acting as an anticatabolic agent, minimising protein breakdown and damage to cells that may occur with intense exercise. Research on HMB has recently tested this hypothesis, under the assumption that it may be the active compound associated with the anticatabolic effects of leucine and its metabolites. While much of the available literature is preliminary in nature and not without methodological concern, there is support for the claims made regarding HMB supplementation, at least in young, previously untrained individuals. A mechanism by which this may occur is unknown, but research undertaken to date suggests there may be a reduction in skeletal muscle damage, although this has not been assessed directly. The response of resistance trained and older individuals to HMB administration is less clear. While the results of research conducted to date appear encouraging, caution must be taken when interpreting outcomes as most manuscripts are presented in abstract form only, not having to withstand the rigors of peer review. Of the literature reviewed relating to HMB administration during resistance training, only 2 papers are full manuscripts appearing in peer reviewed journals. The remaining 8 papers are published as abstracts only, making it difficult to critically review the research. There is clearly a need for more tightly controlled, longer duration studies to verify if HMB enhances strength and muscular hypertrophy development associated with resistance training across a range of groups, including resistance trained individuals.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.