998 resultados para Papillary Patterns Analyze
Resumo:
A modified H-plane sectoral horn antenna with identical E- and'H- plane.patterns over the X-band frequency is discussed. This system has significantly reduced side lobes and hack lobes. Half=power beam width and gain of the antenna are also improved with enhanced matching , Experimental results for a number of horns with various flanges are presented . These find practical application for illuminating symmetric antennas like paraboloids and polarization measurements in radio astronomy, etc. Compared to the fixed pyramidal horns. the present system offers great convenience in trimming the antenna characteristics
Resumo:
Results of exhaustive study of the effect of metallic flanges on H-plane radiation characteristics of V-slot waveguide antenna are presented . It has been established that the beam can be sharpened or broadened by varying the flange angle . The adjustment of the flange angle and flange width would further improve the radiation pattern , yielding optimum efficiency from the flanged system
Resumo:
The Andaman-Nicobar Islands in the Bay of Bengal lies in a zone where the Indian plate subducts beneath the Burmese microplate, and therefore forms a belt of frequent earthquakes. Few efforts, not withstanding the available historical and instrumental data were not effectively used before the Mw 9.3 Sumatra-Andaman earthquake to draw any inference on the spatial and temporal distribution of large subduction zone earthquakes in this region. An attempt to constrain the active crustal deformation of the Andaman-Nicobar arc in the background of the December 26, 2004 Great Sumatra-Andaman megathrust earthquake is made here, thereby presenting a unique data set representing the pre-seismic convergence and co-seismic displacement.Understanding the mechanisms of the subduction zone earthquakes is both challenging sCientifically and important for assessing the related earthquake hazards. In many subduction zones, thrust earthquakes may have characteristic patterns in space and time. However, the mechanism of mega events still remains largely unresolved.Large subduction zone earthquakes are usually associated with high amplitude co-seismic deformation above the plate boundary megathrust and the elastic relaxation of the fore-arc. These are expressed as vertical changes in land level with the up-dip part of the rupture surface uplifted and the areas above the down-dip edge subsided. One of the most characteristic pattern associated with the inter-seismic era is that the deformation is in an opposite sense that of co-seismic period.This work was started in 2002 to understand the tectonic deformation along the Andaman-Nicobar arc using seismological, geological and geodetic data. The occurrence of the 2004 megathrust earthquake gave a new dimension to this study, by providing an opportunity to examine the co-seismic deformation associated with the greatest earthquake to have occurred since the advent of Global Positioning System (GPS) and broadband seismometry. The major objectives of this study are to assess the pre-seismic stress regimes, to determine the pre-seismic convergence rate, to analyze and interpret the pattern of co-seismic displacement and slip on various segments and to look out for any possible recurrence interval for megathrust event occurrence for Andaman-Nicobar subduction zone. This thesis is arranged in six chapters with further subdivisions dealing all the above aspects.
Resumo:
We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.
Resumo:
With the advent of satellite communication and radio astronomy, the need for large and efficient reflector antennas had triggered a widespread investigation in reflector feed design techniques. Major improvements sought are reduction in spill-over, cross polarization losses and the enhancement of aperture efficiency. The search for such a feed culminated in the corrugated horn. The main idea behind the present work is to use the H-plane sectoral horns fitted with,corrugated flanges as feeds of a paraboloid and see how the secondary pattern of the reflector antenna varies with different parameters of the feed. An offset paraboloid is used as the secondary reflector in order to avoid the adverse effect of aperture ‘blocking by the feed horn structure on the secondary radiation pattern. The measurements were repeated for three different H-plane sectoral horns with the same set of corrugated flanges at various X-band frequencies. The following parameters of the whole system are studied: (a) Beam shaping. (b) Gain. (c) Variation of VSWR and (d) Cross polarization
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.
Resumo:
Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
The aims of the current study were 1) to investigate the effects of some environmental factors on lactation curve traits (LCTs) including initial milk yield (A), peak yield (PY), days to attain peak yield (PD), inclining- and declining slope of lactation (B and C, respectively), persistency (Per), and 240-d milk yield, and 2) to estimate pairwise phenotypic correlations between these traits in two Iranian buffalo ecotypes (Khuzestani and Azeri buffaloes). The dataset consisted of 15396 and 9283 lactations from 6632 Khuzestani and 3558 Azeri buffaloes, respectively (collected during 1992–2009). The results revealed that almost all of the factors had significant effects on the majority of the LCTs, whereby age group, parity and season of calving had greater influence on 240-d milk yield and PY than the other LCTs in both of the ecotypes. These effects were more apparent in Khuzestani buffaloes than in Azeri buffaloes. In the Khuzestani ecotype, the LCTs were significantly correlated with each other. However, in the Azeri ecotype the 240-d milk yield showed no significant relationship with parameters B, PD and Per. In conclusion, the studied factors play an important role in determining both the shape of the lactation curve and the overal performance of Iranian dairy buffaloes.