983 resultados para PULSE COMPRESSOR
Resumo:
Partial crystallization of the metallic glass Co66Si16B12Fe4Mo2 was performed by annealing at temperatures between 500 and 540°C for 10-20 min, resulting in crystallite volume fractions of (0.7-5)×10¿3 and sizes of 50-100 nm. This two-phase alloy presents a remarkable feature: a hysteresis loop shift that can be tailored by simply premagnetizing the sample in the adequate magnetic field. Shifts as large as five times the coercive field have been obtained which make them interesting for application as magnetic cores in dc pulse transformers. The asymetrical magnetic reversal is explained in terms of the magnetic dipolar field interaction and the observed hysteresis loops have been satisfactorily simulated by a modification of Stoner-Wohlfarth¿s model of coherent rotations.
Resumo:
Laser-induced forward transfer (LIFT) is a laser direct-write technique that offers the possibility of printing patterns with a high spatial resolution from a wide range of materials in a solid or liquid state, such as conductors, dielectrics, and biomolecules in solution. This versatility has made LIFT a very promising alternative to lithography-based processes for the rapid prototyping of biomolecule microarrays. Here, we study the transfer process through the LIFT of droplets of a solution suitable for microarray preparation. The laser pulse energy and beam size were systematically varied, and the effect on the transferred droplets was evaluated. Controlled transfers in which the deposited droplets displayed optimal features could be obtained by varying these parameters. In addition, the transferred droplet volume displayed a linear dependence on the laser pulse energy. This dependence allowed determining a threshold energy density value, independent of the laser focusing conditions, which acted as necessary conditions for the transfer to occur. The corresponding sufficient condition was given by a different total energy threshold for each laser beam dimension. The threshold energy density was found to be the dimensional parameter that determined the amount of the transferred liquid per laser pulse, and there was no substantial loss of material due to liquid vaporization during the transfer.
Resumo:
Time-resolved imaging is carried out to study the dynamics of the laser-induced forward transfer of an aqueous solution at different laser fluences. The transfer mechanisms are elucidated, and directly correlated with the material deposited at the analyzed irradiation conditions. It is found that there exists a fluence range in which regular and well-defined droplets are deposited. In this case, laser pulse energy absorption results in the formation of a plasma, which expansion originates a cavitation bubble in the liquid. After the further expansion and collapse of the bubble, a long and uniform jet is developed, which advances at a constant velocity until it reaches the receptor substrate. On the other hand, for lower fluences no material is deposited. In this case, although a jet can be also generated, it recoils before reaching the substrate. For higher fluences, splashing is observed on the receptor substrate due to the bursting of the cavitation bubble. Finally, a discussion of the possible mechanisms which lead to such singular dynamics is also provided.
Resumo:
Abstract Electrical stimulation is a new way to treat digestive disorders such as constipation. Colonic propulsive activity can be triggered by battery operated devices. This study aimed to demonstrate the effect of direct electrical colonic stimulation on mean transit time in a chronic porcine model. The impact of stimulation and implanted material on the colonic wall was also assessed. Three pairs of electrodes were implanted into the caecal wall of 12 anaesthetized pigs. Reference colonic transit time was determined by radiopaque markers for each pig before implantation. It was repeated 4 weeks after implantation with sham stimulation and 5 weeks after implantation with electrical stimulation. Aboral sequential trains of 1-ms pulse width (10 V; 120 Hz) were applied twice daily for 6 days, using an external battery operated stimulator. For each course of markers, a mean value was computed from transit times obtained from individual pig. Microscopic examination of the caecum was routinely performed after animal sacrifice. A reduction of mean transit time was observed after electrical stimulation (19 +/- 13 h; mean +/- SD) when compared to reference (34 +/- 7 h; P = 0.045) and mean transit time after sham stimulation (36 +/- 9 h; P = 0.035). Histological examination revealed minimal chronic inflammation around the electrodes. Colonic transit time measured in a chronic porcine model is reduced by direct sequential electrical stimulation. Minimal tissue lesion is elicited by stimulation or implanted material. Electrical colonic stimulation could be a promising approach to treat specific disorders of the large bowel.
Resumo:
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.
Resumo:
BACKGROUND/AIMS: Endocrine features of polycystic ovary syndrome (PCOS) include altered ovarian steroidogenesis, hyperinsulinemia and abnormal luteinizing hormone (LH) secretion. This study was undertaken to further evaluate the role of insulin to modulate LH secretion in lean PCOS patients with normal insulin sensitivity and normal volunteers. METHODS: The study was performed in five nonobese patients diagnosed with PCOS on the basis of amenorrhea and a polycystic morphology at ovarian ultrasound, and 5 normal controls in early to mid-follicular phase and matched for weight and age. All subjects were phenotyped, and then admitted for 12 h of frequent (q 10') blood sampling on two separate occasions, once for a baseline study and the other time for a hyperinsulinemic and euglycemic clamp study. LH was measured in samples obtained throughout each admission in order to perform LH pulse analysis. RESULTS: Baseline LH secretion in PCOS subjects was significantly different from controls: they had higher LH levels, higher LH/FSH ratios as well as a faster LH pulse frequency than normal women. Insulin administration did not affect the pattern of LH secretion of PCOS patients, whereas it significantly increased the LH pulse frequency while decreasing the LH interpulse intervals in the controls. CONCLUSIONS: These data confirm that an abnormal pattern of LH secretion characteristic of PCOS can be observed in lean patients, and appears independent of peripheral insulin levels. Furthermore, our results in lean controls provide the first direct evidence that peripheral insulin can modulate the activity of hypothalamic gonadotropin-releasing hormone (GnRH) neurons in the human.
Resumo:
Approaching or looming sounds (L-sounds) have been shown to selectively increase visual cortex excitability [Romei, V., Murray, M. M., Cappe, C., & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19, 1799-1805, 2009]. These cross-modal effects start at an early, preperceptual stage of sound processing and persist with increasing sound duration. Here, we identified individual factors contributing to cross-modal effects on visual cortex excitability and studied the persistence of effects after sound offset. To this end, we probed the impact of different L-sound velocities on phosphene perception postsound as a function of individual auditory versus visual preference/dominance using single-pulse TMS over the occipital pole. We found that the boosting of phosphene perception by L-sounds continued for several tens of milliseconds after the end of the L-sound and was temporally sensitive to different L-sound profiles (velocities). In addition, we found that this depended on an individual's preferred sensory modality (auditory vs. visual) as determined through a divided attention task (attentional preference), but not on their simple threshold detection level per sensory modality. Whereas individuals with "visual preference" showed enhanced phosphene perception irrespective of L-sound velocity, those with "auditory preference" showed differential peaks in phosphene perception whose delays after sound-offset followed the different L-sound velocity profiles. These novel findings suggest that looming signals modulate visual cortex excitability beyond sound duration possibly to support prompt identification and reaction to potentially dangerous approaching objects. The observed interindividual differences favor the idea that unlike early effects this late L-sound impact on visual cortex excitability is influenced by cross-modal attentional mechanisms rather than low-level sensory processes.
Resumo:
The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.