999 resultados para POLYMER FOAMS
Resumo:
A new class of rubbery 'polymer-in-salt' electrolytes for application in solid-state lithium batteries has been explored by differential scanning calorimetry and a.c. impedance analysis. Simple phase diagrams of LiN(CF3SO2)(2)+LiClO4 and LiC(CF3SO2)(3)+LiN(CF3SO2)(2) have been drawn, which are very important to determine polymer-in-salt electrolyte materials. The conductivities obtained by a.c. impedance measurement are smaller for the electrolyte that contains acetate LiOAc salt than for the electrolyte without this salt.
Resumo:
A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.
Resumo:
A new amorphous comblike polymer (CBP) based on methylvinyl ether/maleic anhydride altering copolymer backbone and on oligooxyethylene side chain was synthesized. The dynamic mechanical properties of CBP and its Li salt complexes were investigated by means of DDV-11-EA type viscoelastic spectrometry. Results showed that there were two glass transitions (alpha-transition and beta-transition) in the temperature range from -100 to 100 degrees C. The beta-transition was assigned to oligo-PEO side chains and the temperature of beta-transition increases with increasing Li salt content. The alpha-transition was assigned to the main chain of CBP. The temperature of the alpha-transition (T-alpha) is also dependent upon the Li-salt content, but not monotonic. The value of T-alpha lies between 30-45 degrees C in the Li salt concentration range studied, near room temperature. It was found that the CBP-Li salt complexes showed an unusual dependence of ionic conductivity on Li salt content. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration, which has been ascribed to the movability of the CBP main chain at ambient temperature. The temperature dependence bf the ionic conductivity indicated that the Arrhenius relationship was not obeyed, and the plot of log sigma against 1/(T - T-0) showed the unusual dual VTF behavior when using side chain glass transition temperature (T-beta) as T-0.
Resumo:
Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.
Resumo:
Three comb polymers(CP) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were prepared from methyl vinyl ether/maleic anhydride alternating copolymer. Homogeneous amorphous polymer electrolytes were made from CP and LiCF3SO3 or LiClO4 by solvent-casting method, and their conductivities were measured as a function of temperature and salt concentration. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation. The conductivity maximum appears at lower salt concentration when CP has longer side chains. XPS was used to study the cation-polymer interaction.
Resumo:
A comb polymer with oligo-oxyethylene side chains of the type -(CH2CB2O)(12)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly (ethylene glycol) methyl ether. The polymer can dissolve LiClO4 salt to form homogeneous amorphous polymer electrolyte. The ac ion conduction was measured using the complex impedance method, and conductivities were investigated as functions of temperatures and salt concentration. The complexes were first found to have two classes of glass transition which increase with increasing salt content, The optimum conductivity attained at 25 degrees C is in the order of 5.50 x 10(-6)Scm(-1). IR spectroscopy was used to study the cation-polymer interaction.
Resumo:
The diffusion rates of ferrocene have been estimated in five kinds of poly(ethylene glycol) solution, containing the electrolyte LiClO4, by using non-steady-state chronoamperometry. The D-app of ferrocene increases with increasing temperature, and the dependency of D-app on temperature obeys the Williams-Landel-Ferry equation. The D-app of ferrocene decreases with increasing polymer chain length. Both the chain length and temperature dependence conform to a simple free volume model. A relation between current and polymer chain length is suggested at room and high temperatures.
Resumo:
The compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible LLDPE/PS blends has been studied by means of C-13 CP-MAS NMR and DSC techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/PS blends, and the compatibilizing effect of LLDPE-g-PS on LLDPE/PS blends depends on the PS grafting yield and molecular structure of the compatibilizers and also on the composition of the blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and PS, through solubilization of chemically identical segments of LLDPE-g-PS into the noncrystalline region of the LLDPE and PS domain, respectively. Meanwhile, LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, resulting in an obvious change in the crystallization behavior of LLDPE. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Polypyrrole film electrode with Co(W2O7)(6)(10-) and CuW12O406- ions were synthesised in aqueous solutions, The electrode possesses a good stability and cyclic voltammetric behavior in weakly acidic or near neutral solutions, The redox of CuW12O406- ion can be catalysed by the polypyrrole film, The ESR measurement of the polypyrrole film with Co(W2O7)(6)(10-) and CuW12O406- ions indicates that the heteropolyanions not only play the role of neutralizing electricity in the polypyrrole film, contrasted with the film containing NO3-, but also Interact with the polypyrrole molecular chain to form some additive compound, The additive compound affects the electric structure elf the polypyrrole film and is unstable at more positive or more negative potentials.
Resumo:
A new amorphous comblike polymer(CBP) based on methylvinyl ether/maleic anhydride alternating copolymer backbone and on oligooxyethylene side chain was synthesized The dynamic mechanical properties of CBP-Li salt complexes showed that there were two glass transitions. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration. The plot of Log sigma against 1/(T-To) shows an unusual dual VTF behavior when using sidechain glass transition temperature (T-beta) as To.
Resumo:
The diffusion rates of seven ferrocene derivatives have been estimated in polyelectrolyte PEG . LiClO4 by using non-steady-state chronoamperometry. The D-app of ferrocene derivatives increases with temperature, and the dependency of D-app on temperature obeys the Arrhenius equation. The D-app of ferrocene derivatives decreases with increasing size of electroactive species. The Delta D-app values of D-T>Tm and D-T
Resumo:
The effect of processing conditions on the electrical and dynamic behavior of carbon black (CB) filled ethylene/ethylacrylate copolymer (EEA) composites was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Compared with the solution counterpart, the mechanical composites have a strong positive temperature coefficient (PTC) effect and a high dynamic elastic modulus, which results from the good dispersion state of carbon black in EEA, i.e. the strong interaction between carbon black and EEA. It can be concluded that the strong interaction between polymer and carbon black is essential for composites to have a high PTC intensity, good electrical reproducibility and high dynamic elastic modulus. Copyright (C) 1996 Published by Elsevier Science Ltd.
Resumo:
A new kind of polymer gel electrolyte which is composed of polytriethylene glycol dimethacrylate(PTREGD), propylene carbonate(PC) and LiPF6 has been prepared by thermal polymerization. The conductivity was measured as a function of temperature, and it was found that the Arrhenius equation was held very well through out the salt concentration studied. Maximum room temperature conductivity of 4.95 x 10(-4) S/cm, as well as a minimum activation energy value of 18.90 kJ/mol were obtained at the same salt concentration of 0.22 mol/L.
Resumo:
Poly(styrene-co-acrylamide) (PSAm)-titanium complexes (PSAm . Ti) were prepared and characterized. It is found that the coordination number of acrylamide (Am) to Ti in the complexes is strongly dependent on Am content in PSAm, but not on [Am]/[Ti] ratio in the feed. The infrared and x-ray photoelectron spectra suggest that the polymer-supported complexes possess the structure [GRAPHICS] The catalytic behavior of the complexes in styrene polymerization is described. The catalytic activity is markedly affected by [Al]/[Ti] ratio in the complexes. C-13 NMR, IR, and DSC data indicate that the polystyrene obtained with PSAm . Ti/MAO (MAO = methylaluminoxane) is highly syndiotactic. Use of Et(3)Al and i-Bu(3)Al in place of MAO gives atactic polystyrene. The activities of the various aluminum compounds used as the cocatalysts decrease in the order: MAO > Et(3)Al > i-Bu(3)Al. The polymer-supported complexes show relatively high activity even after the complexes had been exposed to air for 19 h or higher polymerization temperature. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.