978 resultados para Optimizing Compilation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress can cause damage and atrophy of neurons in the hippocampus by deregulating the expression of neurotrophic factors that promote neuronal plasticity. The endocannabinoid system represents a physiological substrate involved in neuroprotection at both cellular and emotional levels. The lack of CB1 receptor alters neuronal plasticity and originates an anxiety-like phenotype in mice. In the present study, CB1 knockout mice exhibited an augmented response to stress revealed by the increased despair behavior and corticosterone levels showed in the tail suspension test and decreased brain derived neurotrophic factor (BDNF) levels in the hippocampus. Interestingly, local administration of BDNF in the hippocampus reversed the increased despair behavior of CB1 knockout mice, confirming the crucial role played by BDNF on the emotional impairment of these mutants. The neurotrophic deficiency seems to be specific for BDNF since no differences were found in the levels of NGF and NT-3, two additional neurotrophic factors. Moreover, BDNF impairment is not related to the activity of its specific receptor TrkB or the activity of the transcription factor CREB. These results suggest that the lack of CB1 receptor originates an enhanced response to stress and neuronal plasticity by decreasing BDNF levels in the hippocampus that lead to impairment in the responses to emotional disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This guide contains valuable information in an understandable format relating to the rights and duties of those covered by Iowa’s workers’ compensation law. This publication is intended to be used as a compilation of general information for commonly asked questions. Opinions oconclusions expressed or implied in this guide should not be considered to be a final determination of this office. You may copy and distribute the guide to others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonergic and endocannabinoid systems are important substrates for the control of emotional behavior and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared to wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the dorsal raphe nucleus, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an overexpression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the dorsal raphe nucleus by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.