999 resultados para Olfactory Identification
Resumo:
Pseudomonas fluorescens is an aquaculture pathogen that can infect a number of fish species. The virulence mechanisms of aquatic P. fluorescens remain largely unknown. Many P. fluorescens strains are able to secrete an extracellular protease called AprX, yet no AprX-like proteins have been identified in pathogenic P. fluorescens associated with aquaculture. In this study, a gene encoding an AprX homologue was cloned from TSS, a pathogenic A fluorescens strain isolated from diseased fish. In TSS, AprX is secreted into the extracellular milieu, and the production of AprX is controlled by growth phase and calcium. Mutation of aprX has multiple effects, which include impaired abilities in interaction with cultured host cells, adherence to host mucus, modulation of host immune response, and dissemination and survival in host tissues and blood. Purified recombinant AprX exhibits apparent proteolytic activity, which is optimal at pH 8.0 and 50 degrees C. The protease activity of recombinant AprX is enhanced by Ca2+ and Zn2+ and reduced by Co2+. Cytotoxicity analyses showed that purified recombinant AprX has profound toxic effect on cultured fish cells. These results demonstrate that AprX is an extracellular metalloprotease that is involved in bacterial virulence. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
C-type lectins are Ca2+ dependent carbohydrate-recognition proteins that play crucial roles in the invertebrate innate immunity, such as nonself recognition, activation of proPO system, antibacterial activity, promotion of phagocytosis and nodule formation. In this study, a novel C-type lectin of bay scallops Argopecten irradians (Ai Lec) was identified using expressed sequence tag (EST) and RACE techniques. The Ai Lec cDNA encoded a polypeptide of 171 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 150 amino acids. The deduced amino acid sequence of Ai Lec was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 131 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. The expression of Ai Lec transcript was dominantly detected in the hepatopancreas and slightly detected in the haemocytes of normal scallops. 6 h after Vibrio anguillarum-challenge and 8 h after Micrococcus luteus-challenge, the temporal expression of Ai Lec mRNA in hemocytes was increased by 4.4- and 3.6-folds, respectively. The results suggested that Ai Lec was a constitutive and inducible acute-phase protein and might be involved in immune response to Gram-negative and Gram-positive microbial infection in bay scallop A. irradians.
Resumo:
Twenty-seven Porphyra lines from 5 classes, including lines widely used in China, wild lines, and lines introduced to China from abroad in recent years, were screened by means of amplified fragment length polymorphism (AFLP) with 24 primer pairs. From the generated AFLP products, 13 bands that showed stable and repeatable AFLP patterns amplified by primer pairs M-CGA/E-AA and M-CGA/E-TA were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with digitals 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band. On the basis of these results, computerized AFLP DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique AFLP,fingerprinting pattern and can be easily distinguished from others. Software called PGI-AFLP (Porphyra germplasm identification-AFLP) was designed for identification of the 27 Porphyra lines. In addition, 21 specific AFLP markers from 15 Porphyra lines were identified; 6 AFLP markers from 4 Porphyra lines were sequenced, and 2 of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed AFLP DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification, and resource protection of the Porphyra lines.
Resumo:
Twenty-seven Porphyra lines, including lines widely used in China, wild lines and lines introduced to China from abroad in recent years, were screened by random amplified polymorphic DNA (RAPD) technique with 120 operon primers. From the generated RAPD products, 11 bands that showed stable and repeatable RAPD patterns amplified by OPC-04, OPJ-18 and OPX-06, respectively were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with two digitals, 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band, respectively. Based on the above results, computerized DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique fingerprinting pattern and can be easily distinguished from others. Software named PGI (Porphyra germplasm identification) was designed for identification of the 27 Porphyra lines. In addition, seven specific RAPD markers from seven Porphyra lines were identified and two of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification and resource protection of the Porphyra lines.
Resumo:
A full-length Cks1 homologue gene, AmphiCks1, was identified in amphioxus, Branchiostoma belcheri tsingtauense. Sequence characteristics, phylogeny and patterns of expression during embryonic and larval development were established. The protein predicted from AmphiCks1 showed high sequence identity with vertebrate and invertebrate homologues. Protein structural studies and phylogenetic analysis suggested that Cks homologues are evolutionarily conserved. The AmphiCks1 transcript was detected in most early developmental stages by northern blotting and whole-mount in situ hybridization, suggesting a role for the gene in cell division. (c) 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Using in vitro selection method to isolate nucleic acids, peptides and proteins has been studied intensively in recent years. In vitro mRNA display is a new and effective technique for peptides selection, and the rationale of this technique is that a synthetic mRNA with puromycin could covalently link with the protein that it encodes, thus an mRNA-protein fusion is formed. This approach has been used in identification of many functional peptides. The peptides binding with thymidylate synthase RNA were isolated using mRNA display technique from a large peptide library (>10(13) different sequences). The selection scheme was constructed, and the experimental conditions, including library synthesis, formation of RNA-peptide fusion and RNA immobilization were optimized. Eight cycles have been processed and the results confirmed that the selected peptides could bind with thymidylate synthase mRNA specifically. Compared the amino acid sequences of the selected peptides with those from the initial random library, the basic and aromatic residues in selected peptides were enriched significantly, suggesting these peptide regions may be important in the peptide-TS mRNA interaction. As a novel in vitro selection approach, mRNA display technique would be developed as a powerful tool for isolation of functional peptides and proteins that could interact with immobilized targets with high affinity and specificity.
Resumo:
The phylogenetic relationships and species identification of pufferfishes of the genus Takifugu were examined by use of randomly amplified polymorphic DNA (RAPD) and sequencing of the amplified partial mitochondrial 16S ribosomal RNA genes. Amplifications with 200 ten-base primers under predetermined optimal reaction conditions yielded 1962 reproducible amplified fragments ranging from 200 to 3000 bp. Genetic distances between 5 species of Takifugu and Lagocephalus spadiceus as the outgroup were calculated from the presence or absence of the amplified fragments. Approximately 572 bp of the 16S ribosonial RNA gene was amplified, using universal primers, and used to determine the genetic distance values. Topological phylogenic trees for the 5 species of Takifugu and outgroup were generated from neighbor-joining analysis based on the data set of RAPD analysis and sequences of mitochondrial 16S rDNA. The genetic distance between Takifugu rubripes and Takifugu pseudommus was almost the same as that between individuals within cacti species, but much smaller than that between T. rubripes, T. pseudommus, and the other species. The molecular data gathered from both analysis of mitochondria and nuclear DNA strongly indicated that T. rubripes and T. pseudommus should be regarded as the same species. A fragment of approximately 900 bp was amplified from the genome of all 26 T. pseudommus individuals examined and 4 individuals of intermediate varieties between T. rubripes and T. pseudommus. Of the 32 T. rubripes individuals, only 3 had the amplified fragment. These results suggest that this fragment may be useful in distinguishing between T. rubripes and T. pseudommus.
Resumo:
Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal Delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).
Resumo:
DNA methyltransferase 2 (Dnmt2) is a dual-specificity DNA methyltransferase, which contains a weak DNA methyltransferase and novel tRNA methyltransferase activity. However, its biological function is still enigmatic. To elucidate the expression profiles of Dnmt2 in Artemia franciscana, we isolated the gene encoding a Dnmt2 from A. franciscana and named it as AfDnmt2. The cDNA of AfDnmt2 contained a 1140-bp open reading frame that encoded a putative Dnmt2 protein of 379 amino acids exhibiting 32%similar to 39% identities with other known Dnmt2 homologs. This is the first report of a DNA methyltransferase gene in Crustacean. By using semi-quantitative RT-PCR, A)Dnmt2 was found to be expressed through all developmental stages and its expression increased during resumption of diapause cysts development. Southern blot analysis indicated the presence of multiple copies of AfDnmt2 genes in A. franciscana. (C) 2007 Published by Elsevier Inc.
Resumo:
Sequence-related amplified polymorphism (SRAP) is a novel molecular marker technique designed to amplify open reading frames (ORFs). The SRAP analytic system was set up and applied to Porphyra germplasm identification in this study for the first time. Sixteen Porphyra lines were screened by SRAP technique with 30 primer combinations. In the analysis, 14 primer combinations produced stable and reproducible amplification patterns in three repetitive experiments. Among the total 533 amplified fragments, 522 (98%) were polymorphic, with an average of 38 fragments for each primer combination, ranging in size from 50 to 500 bp. The 533 fragments were visually scored one by one and then used to develop a dendrogram with Unweighted Pair-Group Method Arithmetic Average (UPGMA), and the 16 Porphyra lines were divided into two major groups at the 0.68 similarity level. From the total 533 fragments, I I amplified by two primer combinations, ME1/EM1 and ME4/EM6, were used to develop the DNA fingerprints of the 16 Porphyra lines. The DNA fingerprints were then converted into binary codes, with I and 0 representing presence and absence of the corresponding amplified fragment, respectively. In the DNA fingerprints, each of the 16 Porphyra lines has its unique binary code and can be easily distinguished from the others. This is the first report on the development of SRAP technique and its utilization in germplasm identification of seaweeds. The results demonstrated that SRAP is a simple, stable, polymorphic and reproducible molecular marker technique for the classification and identification of Porphyra lines. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter for the TLR/IL-1R family. In this report, the first mollusk Myd88 ortholog (named as CfMyd88) was cloned from Zhikong scallop (Chlamys farreri). The full-length cDNA of CfMyd88 was of 1554 bp, including a 5 '-terminal untranslated region (UTR) of 427 bp, a polyA tail, and an open reading frame (ORF) of 1104 bp encoding a polypeptide of 367 amino acids containing the typical TLR and IL-1R-related (TIR) domain and death domain (DD). Homology analysis revealed that the predicted amino acid sequence of CfMyd88 was homologous to a variety of previously identified Myd88s with more than 30% identity. The temporal expressions of CfMyd88 mRNA in the mixed primary cultured haemocytes stimulated by lipopolysaccharide (LPS) and peptidoglycans (PGN) were measured by real-time RT-PCR system. The mRNA expression of CfMyd88 decreased after stimulation with both LPS and PGN, and the lowest level was about 1/3 times (at 6 h) and 1/10 times (at 9 h) to that in the control group, respectively. The expression then recovered and was upregulated to two-fold at 9 h after LPS stimulation or to the original level at 12 It after PGN stimulation. The results suggest that the MyD88-dependent signaling pathway exists in scallop and was involved in the defense system. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca2+ for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Resumo:
A novel invertebrate TNF ligand was identified and characterized in Ciona savignyi. The CsTL cDNA consisted of 995 nucleotides and encoded 281 amino acids. A conserved TNF family signature and several motifs of TNF ligand superfamily were identified in deduced amino acid sequence of CsTL. Phylogenetic analysis grouped CsTL, CiTNF (predicted TNF ligand superfamily homolog in Ciona intestinalis) and urchin TL1A with their own cluster apart from mammalian TNF alpha, LTA, TNFSF15 and fish TNFa proteins. Expression studies demonstrated that CsTL mRNA is present in all tested tissues from unchallenged ascidians and its expression was significantly upregulated in hemocytes following LIPS injection. The recombinant CsTL protein expressed using a baculovirus expression system showed potential cytotoxic activity in L929 cells. Present results indicated that TNF ligand superfamity molecules are present in marine invertebrates. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.