991 resultados para Numerical Computations
Resumo:
A combined experimental and numerical study of a transonic shock wave in a parallel walled duct subject to downstream pressure perturbations has been conducted. Experiments and simulations have been carried out with a shock strength of M∞ = 1.4 for pressure perturbation frequencies in the range 16-90 Hz. The dynamics of unsteady shock motion and the interaction structure between the unsteady transonic shock wave and the turbulent tunnel floor boundary layer have been investigated. It is found that the (experimentally measured) dynamics of shock motion are generally well predicted by the computational scheme, especially at relatively low (≈ 40 Hz) frequencies. However, at higher frequencies (≈ 90 Hz), some subtle differences between the shock dynamics measured in experiments and those predicted by Computational Fluid Dynamics (CFD) exist. There is evidence from experiments that variations in shock / boundary layer interaction (SBLI) structure caused by shock motion are responsible for a change in the nature of shock dynamics between low and high frequency. In contrast, numerical results at low and high frequencies do not differ significantly and this suggests that the numerical method is not fully capturing the physics of the unsteady flow. Possible reasons for this are considered and a number of areas where CFD is unable to replicate experimental observations are identified. Significantly, CFD predicts changes in SBLI structure due to shock motion that are much too large and this may explain why none of the subtle effects on shock dynamics seen in experiments occur in CFD. Further work developing numerical methods that demonstrate a more realistic sensitivity of SBLI structure to unsteady shock motion is required. Copyright © 2010 by P.J.K. Bruce.
Resumo:
YBaCuO-coated conductors offer great potential in terms of performance and cost-saving for superconducting fault current limiter (SFCL). A resistive SFCL based on coated conductors can be made from several tapes connected in parallel or in series. Ideally, the current and voltage are shared uniformly by the tapes when quench occurs. However, due to the non-uniformity of property of the tapes and the relative positions of the tapes, the currents and the voltages of the tapes are different. In this paper, a numerical model is developed to investigate the current and voltage sharing problem for the resistive SFCL. This model is able to simulate the dynamic response of YBCO tapes in normal and quench conditions. Firstly, four tapes with different Jc 's and n values in E-J power law are connected in parallel to carry the fault current. The model demonstrates how the currents are distributed among the four tapes. These four tapes are then connected in series to withstand the line voltage. In this case, the model investigates the voltage sharing between the tapes. Several factors that would affect the process of quenches are discussed including the field dependency of Jc, the magnetic coupling between the tapes and the relative positions of the tapes. © 2010 IEEE.
Resumo:
Energy Piles present an efficient solution for long-term carbon emission reduction and sustainable construction. However, they have received only partial acceptance by the industry, because of concerns regarding the impact of cyclic thermal changes on the serviceability of energy pile foundations. This paper investigates the applicability of the hybrid load transfer approach to load-settlement analysis of single piles behavior during thermal energy exchange processes. Back-analysis results in terms of the thermal and mechanical response of energy piles show good agreement with field test results from Lambeth College in London. © ASCE 2011.
Resumo:
Mandrel peel tests with mandrels or rollers of varying diameters have been carried out using Mylar backing of several thicknesses and a commercial synthetic acrylic adhesive. The results are critically compared with the numerical predictions of the peeling software package ICPeel. In addition, a finite element model of the mandrel peeling process has been completed which gives good agreement with experiment provided appropriate mechanical properties of adherend and adhesive are used which must include the effects of adherent constraint. The influence of the thickness of the backing is also considered and both experiment and analysis confirm that there is a backing thickness at which the peel force for a laminate of this sort will show a maximum. © 2010 Blackwell Publishing Ltd.
Resumo:
Three dimensional, fully compressible direct numerical simulations (DNS) of premixed turbulent flames are carried out in a V-flame configuration. The governing equations and the numerical implementation are described in detail, including modifications made to the Navier-Stokes Characteristic Boundary Conditions (NSCBC) to accommodate the steep transverse velocity and composition gradients generated when the flame crosses the boundary. Three cases, at turbulence intensities, u′/sL, of 1, 2, and 6 are considered. The influence of the flame holder on downstream flame properties is assessed through the distributions of the surface-conditioned displacement speed, curvature and tangential strain rates, and compared to data from similarly processed planar flames. The distributions are found to be indistinguishable from planar flames for distances greater than about 17δth downstream of the flame holder, where δth is the laminar flame thermal thickness. Favre mean fields are constructed, and the growth of the mean flame brush is found to be well described by simple Taylor type diffusion. The turbulent flame speed, sT is evaluated from an expression describing the propagation speed of an isosurface of the mean reaction progress variable c̃ in terms of the imbalance between the mean reactive, diffusive, and turbulent fluxes within the flame brush. The results are compared to the consumption speed, sC, calculated from the integral of the mean reaction rate, and to the predictions of a recently developed flame speed model (Kolla et al., Combust Sci Technol 181(3):518-535, 2009). The model predictions are improved in all cases by including the effects of mean molecular diffusion, and the overall agreement is good for the higher turbulence intensity cases once the tangential convective flux of c̃ is taken into account. © 2010 Springer Science+Business Media B.V.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.