999 resultados para NaYF4: 0.02Er center dot xYb-PVP nanofibers
Resumo:
This paper presents the structural characterization of the indan derivative (+/-)-1-trans-3-(3,4-dichlorophenyl)-2,3-dihydro-1H-indene-1-carboxamide, which was unambiguously determined by X-ray diffraction (XRD) to be a racemate (R/S: 50/50) crystallizing in an achiral crystal structure (P2(1)/c, a = 9.3180(1) , b = 7.9070(2) , c = 19.7550(4) , beta = 103.250(1)A degrees, V = 1416.75(5) (3) and Z = 4). The diastereomers are related by the inversion symmetry and linked by H bond forming a dimer. The crystal packing is stabilized by hydrogen bonds, including the classical one responsible for the formation of centrosymmetric dimers, and non-classical ones involving C-H center dot center dot center dot O and C-H center dot center dot center dot pi-aryl interactions. The intra and intermolecular geometry of the title compound is compared to the (+/-)-1-trans-3-(3,4-dichlorophenyl)-2,3-dihydro-1H-indene-1-carboxylic acid one, which also present an achiral crystal structure from racemates (R/S: 50/50). The two indan derivatives crystallize in a very similar unit cell.
Resumo:
Four new ternary complexes of copper(I) with thiosaccharin and phosphanes were prepared. The reaction of [Cu(4)(tsac)(4)(CH(3)CN)(2)] (1) (tsac: thiosaccharinate anion) with PPh(3) in molar ratios Cu(I)/PPh(3) 1:075 and 1:2 gave the complexes [Cu(4)(tsac)(4)(PPh(3))(3)] center dot CH(3)CN (2) and Cu(tsac)(PPh(3))(2) (3), respectively. The reaction of 1 with Ph(2)PCH(2)PPh(2) (dppm) in molar ratios Cu(I)/dppm 2:1 and 1:1 gave the complexes [Cu(4) (tsac)(4)(dppm)(2)] center dot 2CH(2)Cl(2) (4) and [Cu(2)(tsac)(2)(dppm)(2)] center dot CH(2)Cl(2) (5), respectively. All the compounds have been characterized by spectroscopic and X-ray crystallographic methods. Complex 2 presents a tetra-nuclear arrangement with three metal centers in distorted tetrahedral S(2)NP environments, the fourth one with the Cu(I) ion in a distorted trigonal S(2)N coordination sphere, and the tsac anions acting as six electron donor ligands in mu(3)-S(2)N coordination forms. Complex 3 shows mononuclear molecular units with copper(I) in a distorted trigonal planar coordination sphere, built with the exocyclic S atom of a mono-coordinated thiosaccharinate anion and two P-atoms of triphenylphosphane molecules. With dppm as secondary ligand the structures of the complexes depends strongly on the stoicheometry of the preparation reaction. Complex 4 has a centrosymmetric structure. Two triply bridged Cu(2)(tsac)(2)(dppm) units are joined together by the exocyclic S-atoms of two tsac anions acting effectively as bridging tridentate ligands. Complex 5 is conformed by asymmetric dinuclear moieties where the two dppm and one tsac ligands bridge two Cu(I) atoms and the second tsac anion binds one of the metal centers through its exocyclic S-atom. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO(2)Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl(2)] (1), [Zn(H2BzClPh)Cl(2)] (2) and [Zn(H2BzpNO(2)Ph)Cl(2)] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)(2)] (1a). Upon re-crystallization in 1: 9 DMSO: acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] center dot H(2)O (2a) and of 3 into [Zn(2BzpNO(2)Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pure O-methyl N-methoxycarbonyl thiocarbamate CH(3)OC(S)N(H)C(O)OCH(3) (I) and O-ethyl N-methoxycarbonyl thiocarbamate, CH(3)CH(2)OC(S)N(H)C(O)OCH(3) (II), are quantitatively prepared by the addition reaction between the CH(3)OC(O)NCS and the corresponding alcohols. The compounds are characterized by multinuclear ((1)H and (13)C) and bi-dimensional ((13)C HSQC) NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach involving crystallographic data, vibration spectra and theoretical calculations. The low-temperature (150 K) crystal structure of II was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic space group P2(1)/n with a = 4.088(1)angstrom. b = 22.346(1)angstrom, c = 8.284(1)angstrom, beta = 100.687(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the thiocarbamate group -OC(S)N(H)- is syn (C=S double bond in synperiplanar orientation with respect to the N-H single bond), while the methoxycarbonyl C=O double bond is in antiperiplanar orientation with respect to the N-H bond. The non-H atoms in II are essentially coplanar and the molecules are arranged in the crystal lattice as centro-symmetric dimeric units held by N-H center dot center dot center dot S=C hydrogen bonds Id(N center dot center dot center dot S) = 3.387(1)angstrom, <(N-H center dot center dot center dot S) = 166.4(2)degrees]. Furthermore, the effect of the it electronic resonance in the structural and vibrational properties is also discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pure N,N`-di(methoxycarbonylsulfenyl)urea, [CH(3)OC(O)SNH](2)CO, is quantitatively prepared by the hydrolysis reaction of CH(3)OC(O)SNCO and characterized by (1)H NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach with data obtained from X-ray diffraction, vibrational spectra and theoretical calculation methods. The IR and Raman spectra for normal and deuterated species are reported. The crystal structure of [CH(3)OC(O)SNH](2)CO was determined by X-ray diffraction methods. The substance crystallizes in the orthorhombic P2(1)2(1)2 space group with a = 9.524(2), b = 12.003(1), c = 4.481 (1) angstrom, and Z = 2 moieties in the unit cell. The molecule is sited on a twofold crystallographic axis (C(2)) parallel to c and shows the anti-anti conformation (S-N single bonds antiperiplanar with respect to the opposite C-N single bonds in sulfenyl-urea-sic group). Neighboring molecules are arranged in a chain motif that extends along the C(2)-axis and is held by bifurcated NH center dot center dot center dot O center dot center dot center dot HN intermolecular bonds. A local planar symmetry is observed in the crystal for the central -SN(H)C(O)N(H)S- skeleton. Experimental and calculated data allow to trace this structural feature to the occurrence of N-H center dot center dot center dot O=C hydrogen bonding interactions. Calculated vibrational and structural properties are in good agreement with the experimentally determined features. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Reaction of VOCl(2) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH) Cl(2)] (1), [VO(H2Am4Me) Cl(2)] center dot 1/2HCl (2), [VO(H2Am4Et) Cl(2)] center dot HCl (3) and [VO(2Am4Ph) Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO(2)(2Am4DH)] (5), [VO(2)(2Am4Me)] (6), [VO(2)(2Am4Et)] (7) and [VO(2)(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Five novel organotin complexes with the anthraquinone dyes alizarin (1,2-dihydroxyanthraquinone) and purpurin (1,2,4-trihydroxyanthraquinone) were synthesized and characterized by elemental analyses, FTIR and NMR spectroscopy ((1)H, (13)C and (119)Sn). The crystal and Molecular structures Of four complexes were determined by X-ray diffraction on single crystals: [Bu(2)Sn(aliz)(H(2)O)]center dot C(2)H(5)OH (A1 center dot EtO H), [Bu(2)Sn(aliz)(dmso)](2) (A3), [(Bu(2)Sn)(3)O(Hpurp)(2)] (P1) and [Bu(2)Sn(Hpurp)(dmso)](2) (P2), where H(2)aliz = alizarin and H(3)purp = purpurin. The coordination mode of the ligands is identical to that found in their Al/Ca complexes, where they act as dianionic tridentate ligands forming five and six-membered fused chelate rings. The coordination to the tin atoms occurs exclusively via the 1,2- phenolate oxygen and the adjacent quinoid oxygen atoms. The complexes A1, A3 and P1 are dimers with hepta-coordinated tin atoms in form of a slightly distorted pentagonal bipyramid. The trinuclear complex P2 contains two pentacoordinated and one heptacoordinated tin atoms.
Resumo:
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.
Resumo:
The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Five new complexes of general formula: [Ni(RSO(2)N=CS(2))(dppe)], where R = C(6)H(5) (1), 4-ClC(6)H(4) (2), 4-BrC(6)H(4) (3), 4-IC(6)H(4) (4) and dppe = 1,2-bis(diphenylphosphino) ethane and [Ni(4-IC(6)H(4)SO(2)N=CS(2))(PPh(3))(2)] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K(2)(RSO(2)N=CS(2)) and dppe or PPh(3) with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, (1)H NMR, (13)C NMR and (31)P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS(2)P(2) square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H center dot center dot center dot Ni intramolecular short contact interactions were observed in the complexes 1-5. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
A new copper(II) complex of santonic acid [Cu(2)(sant)(4)(H(2)O)(2)]center dot 21/2H(2)O has been prepared and characterized by electronic, vibrational, EPR spectral studies, and stability determinations in solution. The presence of two antiferrromagnetically coupled copper centers in the solid state was detected by EPR. The dinuclear Cu(II) complex crystallizes in the tetragonal P4(3)2(1)2 space group, with a = b = 14.498(3), c = 64.07(1) angstrom. Biological studies indicate that the complex displays interesting potential antitumoral actions. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The alkaline earth tricyanomethanides Mg(tcm)(2) center dot 2H(2)O, Ca(tcm)(2), Sr(tcm)(2) - H2O and Ba(tcm)(2) center dot 2H(2)O were prepared from aqueous solutions of the respective chlorides and silver tricyanomethanide. Their IR spectra and thermal behavior are described. The crystal structures of Ca(tcm)(2) and Ba(tcm)(2) center dot 2H(2)O were determined by single crystal X-ray diffraction. The structure of Ca(tcm)(2) is of the type found for several transition metal tricyanomethanides [1], containing two independent interpenetrating networks. Ba(tcm)(2) center dot 2H(2)O has a unique crystal structure corresponding to a three-dimensional coordination polymer with nine fold coordinated Ba atoms connected by water molecules and tricyanomethanide anions.
Resumo:
The reactions of PbPh2(OAC)(2) with alkylglyoxylate thiosemicarbazones (HRGTSC, R = Et, Bu) afforded complexes of the type [PbPh2(GTSC)] center dot H2O, [PbPh2(RGTSC)(2)] and [PbPh2Cl(BUGTSC)]. The structures of HRGTSC (R = Me, Et, Bu), [PbPh2(OAc)(RGTSC)](R = Me, Et, Bu), [PbPh2Cl(BuGTSC)] and [PbPh2(GTSC)] center dot H2O have been studied by X-ray diffraction. [PbPh2(OAc)(RGTSC)] and [PbPh2(GTSC)] center dot H2O have [PbC2NO3S] kernels and the coordination sphere of the metal is pentagonal bipyramidal. [PbPh2Cl(BuGTSC)] has a [PbC2NOSCI] kernel and the coordination geometry around lead is pentagonal bipyramidal with one vacant site. Analysis of the bond distances in [PbPh2(GTSC)] center dot H2O suggests a significant affinity between diphenyllead(IV) and carboxylate donor groups, supporting a borderline acidic character for this organometallic cation. H-1 and C-13 NMR spectra in DMSO-d(6) suggest the partial dissociation of the acetate in [PbPh2(OAc)(RGTSC)] solutions and indicate some differences in the coordination mode of the two RGTSC(-) ligands in [PbPh2(RGTSC)(2)] complexes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Mebendazole hydrochloride [(5-benzoyl-1H-benzimidazole-2-yl)-carbamic acid methyl ester hydrochloride, MBZ.HCl], a new stable salt of mebendazole (MBZ), has been synthesized and characterized. It can easily be obtained from recrystallization of forms A, B, or C of MBZ in diverse solvents with the addition of hydrochloric acid solution. Crystallographic data reveals that the particular conformation adopted by the carbamic group contributes to the stability of the network. The crystal packing is stabilized by the presence of three N-H...Cl intermolecular interactions that form chains along the b axis. The XRD analyses of the three crystalline habits found in the crystallization process (square-based pyramids, pseudohexagonal plates, and prismatic) show equivalent diffraction patterns. The vibrational behavior is consistent with crystal structure. The most important functional groups show shifts to lower or higher frequencies in relation to the MBZ polymorphs. The thermal study on MBZ center dot HCI indicates that the compound is stable up to 160 degrees C approximately. Decomposition occurs in four steps. In the first step the HCl group is eliminated, and after that the remaining MBZ polymorph A decomposes in three steps, as happens with polymorphs B and C. (C) 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:542-552, 2008.
Resumo:
The coordination chemistry of the ligand N-thiazol-2-yl-toluenesulfonamidate towards the copper(II) ion has been investigated using an electrochemical synthesis method. The X-ray structure of this complex was elucidated and is discussed. The compound crystallised in the monoclinic crystal system, P2(1)/c space group with a = 17.3888(9), b = 16.3003(9), c = 18.3679(9) angstrom and beta = 114.3640(10)degrees. Four bidentate sulfathiazolato anions bridge two metal centers in a paddle-wheel fashion, with the nitrogen atoms as donors to give a dimeric species with a Cu center dot center dot center dot Cu distance of 2.7859(5) angstrom.