996 resultados para NI(111)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first principles calculations for O vacancy diffusion on CeO2(111), we locate a surface diffusion mechanism, the two-step O vacancy exchange one, which is more favored than the most common hopping mechanism. By analyzing the results, we identify quantitatively the physical origin of why the two-step exchange mechanism is preferred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density-functional theory calculations have been carried out to systematically study single surface oxygen vacancies on CeO2(111). It is surprisingly found that multiple structures with the two excess electrons localized at different positions can exist. We show that the origin of the multiconfigurations of 4f electrons is a result of geometric relaxation on the surface and strong localization characteristic of 4f electrons in ceria. The importance of 4f electron structures is also presented and discussed. These results may possess implications for our understanding of materials with f electrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio total energy calculations within a density functional theory framework have been performed for CO and atomic oxygen chemisorbed on the Pt(111) surface. Optimised geometries and chemisorption energies for CO and O on four high-symmetry sites, namely the top, bridge, fee hollow and hcp hollow sites, are presented, the coverage in all cases being 0.25 ML. The differences in CO adsorption energies between these sites are found to be small, suggesting that the potential energy surface for CO diffusion across Pt(111) is relatively flat. The 5 sigma and 2 pi molecular orbitals of CO are found to contribute to bonding with the metal. Some mixing of the 4 sigma and 1 pi molecular orbitals with metal states is also observed. For atomic oxygen, the most stable adsorption site is found to be the fee hollow site, followed in decreasing order of stability by the hcp hollow and bridge sites, with the top site being the least stable. The differences in chemisorption energies between sites for oxygen are larger than in the case of CO, suggesting a higher barrier to diffusion for atomic oxygen. The co-adsorption of CO and O has also been investigated. Calculated chemisorption energies for CO on an O/fcc-precovered surface show that of the available chemisorption sites, the top site at the oxygen atom's next-nearest neighbour surface metal atom is the most stable, with the other four sites calculated bring at least 0.29 eV less stable. The trend of CO site stability in the coadsorption system is explained in terms of a 'bonding competition' model. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio total energy calculations within the Density Functional Theory framework were carried out for Pt(111), Pt(111)-p(2x2)-CO, Pt(111)-p(2x2)-O, and Pt(111)-p(2x2)-(CO+O) to provide an insight into the interaction between CO and O on metal surfaces, an important issue in CO oxidation, and also in promotion and poisoning effects of catalysis. The geometrical structures of these systems were optimized with respect to the total energy, the results of which agree with existing experimental values very well. It is found that (i) the local structures of Pt(111)-p(2x2)-(CO+O), such as the bond lengths of C-O, C-Pt, and O-Pt (chemisorbed O atom with Pt), are almost the same as that in Pt(111)-p(2x2)-CO and Pt(111)-p(2x2)-O, respectively, (ii) the total valence charge density distributions in Pt(111)-p(2x2)-(CO+O) are very similar to that in Pt(111)-p(2x2)-CO, except in the region of the chemisorbed oxygen atom, and also nearly identical to that in Pt(111)-p(2x2)-O, apart from in the region of the chemisorbed CO, and (iii) the chemisorption energy of CO on a precovered Pt(111)-p(2x2)-O and the chemisorption energy of O on a precovered Pt(111)-p(2x2)CO are almost equal to that in Pt(111)-p(2x2)-CO and Pt(111)-p(2x2)-O, respectively. These results indicate that the interaction between CO and chemisorbed oxygen on a metal surface is mainly shore range in nature. The discussions of Pt-CO and Pt-O bonding and the interaction between CO and the chemisorbed oxygen atom on Pt(111) are augmented by local densities of states and real space distributions of quantum states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory calculations are carried out for Rh(111)-p(2 x 2)-CO, Rh(111)-p(2 x 2)-S, Rh(111)-p(2 x 2)-(S + CO), Rh(111)-p(3 x 3)-CO, Rh(111)-p(3 x 3)-S and Rh(111)-p(3 x 3)-(S + CO), aiming to shed some light on the S poisoning effect. Geometrical structures of these systems are optimized and chemisorption energies are determined. The presence of S does not significantly influence the geometrical structure and chemisorption energy of CO and vice versa, which strongly suggests that the interaction between CO and S on the Rh(111) surface is mainly short-range in nature. The long range electronic effect for the dramatic attenuation of the CO methanation activity by sulfur is likely to be incorrect. It is suggested that an ensemble effect may be dominant in the catalytic deactivation. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO oxidation on Pt(111) is studied with ab initio density functional theory. The low energy pathway and transition state for the reaction are identified. The key event is the breaking of an O-metal bond prior to the formation of a chemisorbed CO2 molecule. The pathway can be rationalized in terms of competition of the O and C atoms for bonding with the underlying surface, and the predominant energetic barrier is the strength of the O-metal bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Fe XXV, Co XXVI, Ni XXVII, Cu XXVIII and Zn XXIX. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are listed for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.7 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, for some transitions, are also discussed. Finally, discrepancies between the present results of effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface behaviour is of paramount importance as failure and degradation tend to initiate from the surface. Electroless composite coating (NiP/SiC) was developed using SiC as reinforcing particles. As heat treatment plays a vital role in electroless nickel coating owing to the changes in microstructure, phase structure and mechanical properties, an insight at the interface changes in chemistry and micromechanical behaviour was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and microindentation techniques. Corrosion performance was analysed using electrochemical impedance spectroscopy (EIS). Absence of zinc and migration of copper at the interface was detected. Brittleness and microcracks was seen long the interface when indenting at load of 500 gf (Vickers). Corrosion performance is weaker than particles free coating. However, a thin blanket of NiP could enhance the resistance to corrosive medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of Ni-58/(Fe-54 + Ni-56), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova (SN) that produced a Ni/Fe ratio of 3.4 +/- 1.2 times solar, we find that burning of a fuel with neutron excess eta approximate to 6 x 10(-3) is required. Unless the progenitor metallicity is over five times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. SNe producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of M-ZAMS less than or similar to 13 M-circle dot stars exploding with a delay time of less than one second (M-cut < 1.5 M-circle dot) are able to achieve such silicon-shell ejection. SNe that produce solar or subsolar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic entropy burning outside the iron core, and neutrino-neutronization obtained in electron capture models remains the only viable explanation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.