989 resultados para NEOPROTEROZOIC CRUSTAL ACCRETION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 135 backarc basin lavas are characterized by anomalously high Au contents (1.0-11.4 ppb) and strongly fractionated relative platinum group element (PGE) abundances (Pd/Ir ratio, approximately 100). The Rh and Ir contents are very low, ranging from below detection (approximately 0.02 ppb) to 0.08 ppb. The Pd and Pt contents range from <0.3 to 4 ppb. Rh, Pd, and Pt values are consistently and significantly higher in Site 836 and 839 samples relative to those from Sites 834 and 835. Major, trace, and rare earth element (REE) data suggest Sites 836 and 839 have a more pronounced arc signature than Sites 834 and 835. No correlation exists between noble metal abundance and indices of alteration or fractionation (e.g., loss on ignition (LOI), Mg#, and Cr or Ni contents), suggesting that measured values and ratios are primary and reflect characteristics of the mantle source. The evaluation of Leg 135 noble metal data with respect to potential mantle-source components is hindered by the lack of data on magmas derived from such sources. However, analyses of the limited available data for the different magma types suggest that the characteristic enrichment of Leg 135 lavas in Au, relative to Pd and Cu, cannot be derived solely from simple MORB-type or ocean-island-type mantle, or mantle depleted by a previous melt extraction event. The Au-enriched signature of the Lau basin lavas could, however, be produced through the addition of a sedimentary component from the downgoing slab. Separation of Au from the PGE occurs within oceanic hydrothermal systems and gold values of the resultant precipitates are 2-3 orders of magnitude higher than other oceanic crustal components. Even small additions of this component from the downgoing oceanic crust to a supra-subduction zone mantle melt could account for the high mean Au/Pd ratios of the Leg 135 samples (Sites 834 and 835, Au/Pd = 5.04; Sites 836 and 839, Au/Pd = 2.26).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr-1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m-2 yr-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalt underlying early Campanian chalk at Deep Sea Drilling Project (DSDP) Site 163 is divided into seven extrusive cooling units bounded by glassy margins. The margins have dips of 15° to 70°, suggestive of pillow flows rather than tabular flows. The margins are fresh sideromelane (glass) grading inward to opaque and reddish-brown globules containing microcrystalline material with radial, undulose extinction. Relative to adjacent sideromelane, the reddish-brown globules are enriched in sodium and calcium, whereas the opaque globules are depleted in these elements and enriched in iron and magnesium. It appears that basalt just inside the pillow margins has differentiated in place into globules of two distinct compositions. This globule zone grades inward to less rapidly cooled pyroxene varioles and intergrowths of plagioclase and opaque minerals. In the center of the thicker cooling units, the texture is diabasic. Alteration and calcite vein abundance are greatest at pillow margins and decrease inward; the interior of the thickest cooling unit is only slightly altered, and calcite veins are absent. Chemical analysis of whole rock by atomic absorption spectrophotometry, and of sideromelane by electron microprobe, indicates that the rock is a slightly weathered tholeiite. The atomic absorption analyses, except the one nearest the top of the basalt, are relatively uniform and similar to the sideromelane microprobe analyses, including those near the top of the basalt. This suggests that deep penetration is not necessary to get through the severely altered layer at the basalt surface, and that within this altered layer, analyses of sideromelane may be more representative of crustal composition than analyses of whole rock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the rate of erosion during the 1951-2006 period on the Bykovsky Peninsula, located north-east of the harbour town of Tiksi, north Siberia. Its coastline, which is characterized by the presence of ice-rich sediment (Ice Complex) and the vicinity of the Lena River Delta, retreated at a mean rate of 0.59 m/yr between 1951 and 2006. Total erosion ranged from 434 m of erosion to 92 m of accretion during these 56 years and exhibited large variability (sigma = 45.4). Ninety-seven percent of the rates observed were less than 2 m/yr and 81.6% were less than 1 m/yr. No significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951-2006. Erosion modes and rates actually appear to be strongly dependant on the nature of the backshore material, erosion being stronger along low-lying coastal stretches affected by past or current thermokarst activity. The juxtaposition of wind records monitored at the town of Tiksi and erosion records yielded no significant relationship despite strong record amplitude for both data sets. We explain this poor relationship by the only rough incorporation of sea-ice cover in our storm extraction algorithm, the use of land-based wind records vs. offshore winds, the proximity of the peninsula to the Lena River Delta freshwater and sediment plume and the local topographical constraints on wave development.