985 resultados para Molecular physics
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of H2S --> SH + H have been investigated quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). Resonance energies, widths (rates), and product state distributions have been obtained. Both dissociation rates and product state distributions of SH show, strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and product state distributions are compared to the predictions of quantum phase space theory.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
Resumo:
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.
Resumo:
A discrete protocol for teleportation of superpositions of coherent states of optical-cavity fields is presented. Displacement and parity operators are unconventionally used in Bell-like measurement for field states.
Resumo:
We explore the sensitivity of an interferometer based on a quantum circuit for coherent states. We show that its sensitivity is at the Heisenberg limit. Moreover, we show that this arrangement can measure very small length intervals.
Resumo:
We model the behavior of an ion trap with all ions driven simultaneously and coupled collectively to a heat bath. The equations for this system are similar to the irreversible dynamics of a collective angular momentum system known as the Dicke model. We show how the steady state of the ion trap as a dissipative many-body system driven far from equilibrium can exhibit quantum entanglement. We calculate the entanglement of this steady state for two ions in the trap and in the case of more than two ions we calculate the entanglement between two ions by tracing over all the other ions. The entanglement in the steady state is a maximum for the parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative quantum systems.