991 resultados para Molecular modeling
Resumo:
We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Applied Mathematical Modelling, Vol.33
Resumo:
Dual-phase functionally graded materials are a particular type of composite materials whose properties are tailored to vary continuously, depending on its two constituent's composition distribution, and which use is increasing on the most diverse application fields. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, exactly because of this continuous properties variation characteristic, which enables among other advantages smoother stresses distribution profile. In this paper we study the influence of different homogenization schemes, namely the schemes due to Voigt, Hashin-Shtrikman and Mod-Tanaka, which can be used to obtain bounds estimates for the material properties of particulate composite structures. To achieve this goal we also use a set of finite element models based on higher order shear deformation theories and also on first order theory. From the studies carried out, on linear static analyses and on free vibration analyses, it is shown that the bounds estimates are as important as the deformation kinematics basis assumed to analyse these types of multifunctional structures. Concerning to the homogenization schemes studied, it is shown that Mori-Tanaka and Hashin-Shtrikman estimates lead to less conservative results when compared to Voigt rule of mixtures.
Resumo:
Conferência: CONTROLO’2012 - 16-18 July 2012 - Funchal
Resumo:
An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.
Resumo:
Signal Processing, Vol. 86, nº 10
Resumo:
Most of the traditional software and database development approaches tend to be serial, not evolutionary and certainly not agile, especially on data-oriented aspects. Most of the more commonly used methodologies are strict, meaning they’re composed by several stages each with very specific associated tasks. A clear example is the Rational Unified Process (RUP), divided into Business Modeling, Requirements, Analysis & Design, Implementation, Testing and Deployment. But what happens when the needs of a well design and structured plan, meet the reality of a small starting company that aims to build an entire user experience solution. Here resource control and time productivity is vital, requirements are in constant change, and so is the product itself. In order to succeed in this environment a highly collaborative and evolutionary development approach is mandatory. The implications of constant changing requirements imply an iterative development process. Project focus is on Data Warehouse development and business modeling. This area is usually a tricky one. Business knowledge is part of the enterprise, how they work, their goals, what is relevant for analyses are internal business processes. Throughout this document it will be explained why Agile Modeling development was chosen. How an iterative and evolutionary methodology, allowed for reasonable planning and documentation while permitting development flexibility, from idea to product. More importantly how it was applied on the development of a Retail Focused Data Warehouse. A productized Data Warehouse built on the knowledge of not one but several client needs. One that aims not just to store usual business areas but create an innovative sets of business metrics by joining them with store environment analysis, converting Business Intelligence into Actionable Business Intelligence.
Resumo:
This paper models an n-stage stacked Blumlein generator for bipolar pulses for various load conditions. Calculation of the voltage amplitudes in time domain at the load and between stages is described for an n-stage generator. For this, the reflection and transmission coefficients are mathematically modeled where impedance discontinuity occurs (i.e., at the junctions between two transmission lines). The mathematical model developed is assessed by comparing simulation results to experimental data from a two-stage Blumlein solid-state prototype.
Resumo:
Através da técnica de cromatografia de exclusão molecular utilizando Sephadex G-75 foram estudadas as diferentes frações do veneno de Crotalus durissus terrificus, uma das serpentes peçonhentas mais comuns no Brasil. Foram obtidos 4 picos (correspondentes às frações 32, 60, 86 e 103) com peso molecular variando de 4.000 a 150.000. As frações de todo o diagrama de gel filtração foram triadas através de reação de imunoeletroforese a fim de se verificar suas cargas e velocidade de migração. As linhas de precipitação encontradas foram comparadas às 11 linhas apresentadas pela reação de imunoeletroforese do veneno total contra o soro anti-crotálico. Constatou-se que as frações de um mesmo pico apresentavam características próprias com exceção da fração 54 (subida do pico II) que mostrou diferenças significativas em relação à fração 60. Após a triagem foram escolhidas as frações de cada pico onde as linhas de precipitação foram mais nítidas e intensas, para estudo de identidade através da reação de difusão radial dupla e letalidade comparada a concentração de 0,0625 mg/ml do veneno total que corresponde a DL50 em camundongo pelo método de SPEARM & KÄRBER. As frações 32, 86 e 103 correspondentes respectivamente aos picos I, III e IV apresentaram letalidade nula ou negligenciada e a fração II foi a mais tóxica.
Resumo:
Dissertation presented to obtain a Ph.D. Degree in Chemical Physics
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
Applied and Environmental Microbiology, Vol. 73, No.4
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.
Resumo:
Pultrusion is an industrial process used to produce glass fibers reinforced polymers profiles. These materials are worldwide used when performing characteristics, such as great electrical and magnetic insulation, high strength to weight ratio, corrosion and weather resistance, long service life and minimal maintenance are required. In this study, we present the results of the modelling and simulation of heat flow through a pultrusion die by means of Finite Element Analysis (FEA). The numerical simulation was calibrated based on temperature profiles computed from thermographic measurements carried out during pultrusion manufacturing process. Obtained results have shown a maximum deviation of 7%, which is considered to be acceptable for this type of analysis, and is below to the 10% value, previously specified as maximum deviation. © 2011, Advanced Engineering Solutions.