991 resultados para Modulation Frequencies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many modulation systems in comprehensive 2D GC (GC×GC) are based on cryogenic methods. High trapping temperatures in these systems can result in ineffective trapping of the more volatile compounds, whilst temperatures that are too low can prevent efficient remobilisation of some compounds. To better understand the trapping and release of compounds over a wide range of volatilities, we have investigated a number of different constant temperature modulator settings, and have also examined a constant temperature differential between the cryo-trap and the chromatographic oven. These investigations have led us to modify the temperature regulation capabilities of the longitudinally modulated cryogenic system (LMCS). In contrast to the current system, where the user sets a constant temperature for the cooling chamber, the user now sets the temperature difference between the cryo-trap and the chromatographic oven. In this configuration, the cooling chamber temperature increases during the chromatographic run, tracking the oven temperature ramp. This produces more efficient, volatility-dependent modulation, and increases the range of volatile compounds that can be analysed under optimal trap-and-release conditions within a single analytical run. This system also reduces cryogenic fluid consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mining and analysis of a single long sequence, one fundamental and important problem is obtaining accurate frequencies of sequential patterns over the sequence. However, we identify that five previous frequency measures suffer from inherent inaccuracies. To obtain more accurate frequencies, we introduce two basic principles called strict anti-monotonicity and maximum-count for frequency measures. Under the two principles, a new frequency measure is presented. An algorithm is also devised to compute it. Both theoretical analysis and empirical evaluation show that more accurate frequencies can be obtained under the new measure

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypofhalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin-1 β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-lβ; (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1 β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and (iii) the mechanisms by which systemic IL-lβ triggers the recruitment of CeA cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1β, or air puff. The D1 antagonist, SCH23390, and the D2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1β. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1β (IL-1β, 1 μg/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1β-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1β-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1β administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1β could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1β.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many previous approaches to frequent episode discovery only accept simple sequences. Although a recent approach has been able to nd frequent episodes from complex sequences, the discovered sets are neither condensed nor accurate. This paper investigates the discovery of condensed sets of frequent episodes from complex sequences. We adopt a novel anti-monotonic frequency measure based on non-redundant occurrences, and dene a condensed set, nDaCF (the set of non-derivable approximately closed frequent episodes) within a given maximal error bound of support. We then introduce a series of effective pruning strategies, and develop a method, nDaCF-Miner, for discovering nDaCF sets. Experimental results show that, when the error bound is somewhat high, the discovered nDaCF sets are two orders of magnitude smaller than complete sets, and nDaCF-miner is more efficient than previous mining approaches. In addition, the nDaCF sets are more accurate than the sets found by previous approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sesamin, a major sesame seed lignan, has diverse biological functions including the modulation of molecular actions in lipid metabolic pathways and reducing cholesterol levels. Vertebrates have different capacities to biosynthesize long-chain PUFA from dietary precursors and sesamin can enhance the biosynthesis of ALA to EPA and DHA in marine teleost. Early juvenile barramundi, Lates calcarifer, were fed for two weeks on diets rich in ALA or SDA derived from linseed or Echium plantagineum, respectively. Both diets contained phytosterols and less cholesterol compared with a standard fish oil-based diet. The growth rates were reduced in the animals receiving sesamin regardless of the dietary oil. However, the relative levels of n-3 LC-PUFA in total lipid, but not the phospholipid, increased in the whole body by up to 25% in animals fed on sesamin with ALA or SDA. Sesamin reduced the relative levels of triacylglycerols and increased polar lipid, and did not affect the relative composition of phospholipid subclasses or sterols. Sesamin is a potent modulator for LC-PUFA biosynthesis in animals, but probably will have more effective impact at advanced ages. By modulating certain lipid metabolic pathways, sesamin has probably disrupted the body growth and development of organs and tissues in early juvenile barramundi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized form of coupled photon transport equations that can handle correlated light beams with distinct frequencies is introduced. The derivation is based on the principle of energy conservation. For a single frequency, the current formulation reduces to a standard photon transport equation, and for fluorescence and phosphorescence, the diffusion models derived from the proposed photon transport model match for homogenous media. The generalized photon transport model is extended to handle wideband inputs in the frequency domain. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research indicates that mirror neurons are important for social cognition, including emotion processing. Emerging evidence, however, also reveals that emotional stimuli might be capable of modulating human mirror neuron system (MNS) activity.

The current study used transcranial magnetic stimulation (TMS) to assess putative mirror neuron function following emotionally evocative images in twenty healthy adults.

Participants observed videos of either a transitive hand action or a static hand while undergoing TMS of the primary motor cortex. In order to examine the effect of emotion on the MNS, each video was preceded by an image of either a positive, negative or neutral valence.

MNS activity was found to be augmented by both the positive and negative (relative to neutral) stimuli, thus providing empirical support for a bi-directional link between emotion and the MNS, whereby both positively and negatively valenced stimuli are capable of facilitating mirror neuron activity. The potential adaptive significance of this finding is discussed.