991 resultados para Modeling complexity
The impact of deformation strain on the formation of banded clouds in idealized modeling experiments
Resumo:
Experiments are performed using an idealized version of an operational forecast model to determine the impact on banded frontal clouds of the strength of deformational forcing, low-level baroclinicity, and model representation of convection. Line convection is initiated along the front, and slantwise bands extend from the top of the line-convection elements into the cold air. This banding is attributed primarily to M adjustment. The cross-frontal spreading of the cold pool generated by the line convection leads to further triggering of upright convection in the cold air that feeds into these slantwise bands. Secondary low-level bands form later in the simulations; these are attributed to the release of conditional symmetric instability. Enhanced deformation strain leads to earlier onset of convection and more coherent line convection. A stronger cold pool is generated, but its speed is reduced relative to that seen in experiments with weaker deformational strain, because of inhibition by the strain field. Enhanced low-level baroclinicity leads to the generation of more inertial instability by line convection (for a given capping height of convection), and consequently greater strength of the slantwise circulations formed by M adjustment. These conclusions are based on experiments without a convective-parametrization scheme. Experiments using the standard or a modified scheme for this model demonstrate known problems with the use of this scheme at the awkward 4 km grid length used in these simulations. Copyright © 2008 Royal Meteorological Society
Resumo:
An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.
Resumo:
The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.
Resumo:
This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
With the rapid development in technology over recent years, construction, in common with many areas of industry, has become increasingly complex. It would, therefore, seem to be important to develop and extend the understanding of complexity so that industry in general and in this case the construction industry can work with greater accuracy and efficiency to provide clients with a better service. This paper aims to generate a definition of complexity and a method for its measurement in order to assess its influence upon the accuracy of the quantity surveying profession in UK new build office construction. Quantitative data came from an analysis of twenty projects of varying size and value and qualitative data came from interviews with professional quantity surveyors. The findings highlight the difficulty in defining and measuring project complexity. The correlation between accuracy and complexity was not straightforward, being subjected to many extraneous variables, particularly the impact of project size. Further research is required to develop a better measure of complexity. This is in order to improve the response of quantity surveyors, so that an appropriate level of effort can be applied to individual projects, permitting greater accuracy and enabling better resource planning within the profession.
Resumo:
Infants' responses in speech sound discrimination tasks can be nonmonotonic over time. Stager and Werker (1997) reported such data in a bimodal habituation task. In this task, 8-month-old infants were capable of discriminations that involved minimal contrast pairs, whereas 14-month-old infants were not. It was argued that the older infants' attenuated performance was linked to their processing of the stimuli for meaning. The authors suggested that these data are diagnostic of a qualitative shift in infant cognition. We describe an associative connectionist model showing a similar decrement in discrimination without any qualitative shift in processing. The model suggests that responses to phonemic contrasts may be a nonmonotonic function of experience with language. The implications of this idea are discussed. The model also provides a formal framework for studying habituation-dishabituation behaviors in infancy.