981 resultados para Mixed integer nonlinear programming
Resumo:
Using density functional theory, we investigate the structure of mixed 3HeN3-4HeN4 droplets with an embedded impurity (Xe atom or HCN molecule) which pins a quantized vortex line. We find that the dopant+vortex+4HeN4 complex, which in a previous work [F. Dalfovo et al., Phys. Rev. Lett. 85, 1028 (2000)] was found to be energetically stable below a critical size Ncr, is robust against the addition of 3He. While 3He atoms are distributed along the vortex line and on the surface of the 4He drop, the impurity is mostly coated by 4He atoms. Results for N4 = 500 and a number of 3He atoms ranging from 0 to 100 are presented, and the binding energy of the dopant to the vortex line is determined.
Resumo:
We show, both theoretically and experimentally, that the interface between two viscous fluids in a Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is reached. We identify the family of exact elastica solutions [Nye et al., Eur. J. Phys. 5, 73 (1984)] as the unstable branch of the corresponding subcritical bifurcation which ends up at a topological singularity defined by interface pinchoff. We devise an experimental procedure to prepare arbitrary initial conditions in a Hele-Shaw cell. This is used to test the proposed bifurcation scenario and quantitatively asses its practical relevance.
Resumo:
Due to the immiscibility of 3He into 4He at very low temperatures, mixed helium droplets consist of a core of 4He atoms coated by a 3He layer whose thickness depends on the number of atoms of each isotope. When these numbers are such that the centrifugal kinetic energy of the 3He atoms is small and can be considered as a perturbation to the mean-field energy, a novel shell structure arises, with magic numbers different from these of pure 3He droplets. If the outermost shell is not completely filled, the valence atoms align their spins up to the maximum value allowed by the Pauli principle.
Resumo:
We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found. Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical information about the role that the viscosity contrast and the surface tension play in the dynamics of the system. We finally check the quantitative validity of different orders of approximation and a resummation scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order approximations and the exact solution is excellent within the radius of convergence, and is even reasonably good beyond this radius.
Resumo:
We present a weakly nonlinear analysis of the interface dynamics in a radial Hele-Shaw cell driven by both injection and rotation. We extend the systematic expansion introduced in [E. Alvarez-Lacalle et al., Phys. Rev. E 64, 016302 (2001)] to the radial geometry, and compute explicitly the first nonlinear contributions. We also find the necessary and sufficient condition for the uniform convergence of the nonlinear expansion. Within this region of convergence, the analytical predictions at low orders are compared satisfactorily to exact solutions and numerical integration of the problem. This is particularly remarkable in configurations (with no counterpart in the channel geometry) for which the interplay between injection and rotation allows that condition to be satisfied at all times. In the case of the purely centrifugal forcing we demonstrate that nonlinear couplings make the interface more unstable for lower viscosity contrast between the fluids.