980 resultados para Missions to Jews
Resumo:
Genetic transformation with genes that code for antimicrobial peptides has been an important strategy used to control bacterial diseases in fruit crops, including apples, pears, and citrus. Asian citrus canker (ACC) caused by Xanthomonas citri subsp. citri Schaad et al. (Xcc) is a very destructive disease, which affects the citrus industry in most citrus-producing areas of the world. Here, we report the production of genetically transformed Natal, Pera, and Valencia sweet orange cultivars (Citrus sinensis L. Osbeck) with the insect-derived attacin A (attA) gene and the evaluation of the transgenic plants for resistance to Xcc. Agrobacterium tumefaciens Smith and Towns-mediated genetic transformation experiments involving these cultivars led to the regeneration of 23 different lines. Genetically transformed plants were identified by polymerase chain reaction, and transgene integration was confirmed by Southern blot analyses. Transcription of attA gene was detected by Northern blot analysis in all plants, except for one Natal sweet orange transformation event. Transgenic lines were multiplied by grafting onto Rangpur lime rootstock plants (Citrus limonia Osbeck) and spray-inoculated with an Xcc suspension (10(6) cfu mL(-1)). Experiments were repeated three times in a completely randomized design with seven to ten replicates. Disease severity was determined in all transgenic lines and in the control (non-transgenic) plants 30 days after inoculation. Four transgenic lines of Valencia sweet orange showed a significant reduction in disease severity caused by Xcc. These reductions ranged from 58.3% to 77.8%, corresponding to only 0.16-0.30% of leaf diseased area as opposed to 0.72% on control plants. One transgenic line of Natal sweet orange was significantly more resistant to Xcc, with a reduction of 45.2% comparing to the control plants, with only 0.14% of leaf diseased area. Genetically transformed Pera sweet orange plants expressing attA gene did not show a significant enhanced resistance to Xcc, probably due to its genetic background, which is naturally more resistant to this pathogen. The potential effect of attacin A antimicrobial peptide to control ACC may be related to the genetic background of each sweet orange cultivar regarding their natural resistance to the pathogen.
Resumo:
Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naive seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a `basal` species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 degrees C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 degrees C and 40 % relative air humidity). All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 degrees C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low removal rates by naive avian frugivores.
Resumo:
Transgenic Citrus sinensis (L.) Osb. cv. Hamlin plants expressing the hrpN gene were obtained by Agrobacterium tumefaciens (Smith and Towns) Conn-mediated transformation. hrpN encodes a harpin protein, which elicits the hypersensitive response and systemic acquired resistance in plants. The gene construct consisted of gst1, a pathogen-inducible promoter, a signal peptide for protein secretion to the apoplast, the selection genes nptI1 or aacC1 and the Nos terminator. The function of gst1 in citrus was evaluated in transgenic C. sinensis cv. Valencia harboring the reporter gene uidA (gus) driven by this promoter. Histochemical analysis for gus revealed that gst1 is activated in citrus leaves by both wounding and inoculation with Xanthomonas axonopodis Starr and Garces pv. citri (Hasse) Vauterin et al. Genetic transformation was confirmed by Southern blot hybridization in eight cv. Hamlin acclimatized plants. RT-PCR confirmed hrpN gene expression in seven cv. Hamlin transgenic lines before pathogen inoculation. Some hrpN transgenic lines showed severe leaf curling and abnormal growth. Six hrpN transgenic lines were propagated and evaluated for susceptibility to X axonopodis pv. citri. RT-PCR confirmed gene expression in all six hrpN transgenic lines after pathogen inoculation. Several of the hrpN transgenic lines showed reduction in susceptibility to citrus canker as compared with non-transgenic plants. One hrpN transgenic line exhibited normal vegetative development and displayed very high resistance to the pathogen, estimated as up to 79% reduction in disease severity. This is the first report of genetic transformation of citrus using a pathogen-inducible promoter and the hrpN gene. Further evaluations of the transgenic plants under field conditions are planned. Nevertheless, the evidence to date suggests that the hrpN gene reduces the susceptibility of citrus plants to the canker disease. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The export of nitrogen (N) from senescent plant parts is important for the efficient use of this macronutrient. The objective of this study was to establish correlations among the photosynthetic pigment content, total N, and the photosynthetic variables with the SPAD-502 readings in Coffea arabica leaves. Correlations were established among the chlorophyll content, N content, and chlorophyll a and b with SPAD-502 readings taken on coffee leaves at different months. The results show that all variables decreased with time. However, correlation increased linearly with N doses. Total chlorophyll presented a direct linear correlation with readings of the portable chlorophyll meter. The SPAD readings have shown to be a good tool to diagnose the integrity of the photosynthetic system in coffee leaves. Thus, the portable chlorophyll SPAD-502 instrument can be used to evaluate the N status and can also help to evaluate the photosynthetic process in coffee plants.
Resumo:
Somatic hybridization is a biotechnology tool that can be used in citrus breeding programs to produce somatic hybrids with the complete genetic combination of both parents. The goal of this work was to test the reaction of citrus somatic hybrids that may be useful as rootstocks to trunk and root infections caused by Phytophthora nicotianae van Breda de Haan (P parasitica Dastur) and to citrus tristeza virus (CTV). The somatic hybrids evaluated were `Caipira` sweet orange (Citrus sinensis L. Osbeck) + `Rangpur` lime (C. limonia Osbeck), `Caipira` sweet orange + `Cleopatra` mandarin (C. reshni hort. ex Tanaka), `Caipira` sweet orange + `Volkamer` lemon (C. volkameriana V Ten. & Pasq.), `Caipira` sweet orange + rough lemon (C. jambhiri Lush.), `Cleopatra` mandarin + `Volkamer` lemon, `Cleopatra` mandarin + sour orange (C. aurantium L.), `Rangpur` lime + `Sunki` mandarin (C. sunki (Hayata) hort. ex Tanaka), `Ruby Blood` sweet orange (C. sinensis L. Osbeck) + `Volkamer` lemon, `Rohde Red` sweet orange (C. sinensis L. Osbeck) + `Volkamer` lemon, and `Valencia` sweet orange + Fortunella obovata hort. ex Tanaka. For P. nicotianae trunk and root infection assays, plants of the somatic hybrids, obtained from 9-month semi-hardwood cuttings, were evaluated and compared with diploid citrus rootstock cultivars after mycelia inoculation in the trunk or spore infestation in the substrate, respectively. `Cleopatra` mandarin + sour orange, `Rangpur` lime + `Sunki` mandarin, `Cleopatra` mandarin + `Volkamer` lemon, `Ruby Blood` sweet orange + `Volkamer` lemon, `Rohde Red` sweet orange + `Volkamer` lemon, and `Caipira` sweet orange + `Volkamer` lemon had less trunk rot occurrence, whereas the somatic hybrids `Cleopatra` mandarin + `Volkamer` lemon, `Cleopatra` mandarin + sour orange, `Caipira` sweet orange + `Volkamer` lemon, and `Caipira` sweet orange + `Rangpur` lime were tolerant to root rot. For CTV assays, plants of the somatic hybrids along with tolerant and intolerant rootstocks were budded with a mild strain CTV-infected or healthy `Valencia` sweet orange budwood. Differences in average scion shoot length indicated that the hybrids `Cleopatra` mandarin + sour orange and `Valencia` sweet orange + Fortunella obovata were intolerant to CTV (c) 2007 Elsevier B.V. All rights reserved.