988 resultados para Medial PFC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral objects and encoding tasks. This initial learning phase was followed by a memory updating phase, during which participants learned picture-location associations for old pictures (i.e., pictures previously associated with other neutral stimuli) and new pictures (i.e., pictures not seen in the first phase). There was greater frontopolar/orbito-frontal (OFC) activity when people learned picture–location associations for old negative pictures than for new negative pictures, but frontopolar OFC activity did not significantly differ during learning locations of old versus new neutral pictures. In addition, frontopolar activity was more negatively correlated with the amygdala when participants learned picture–location associations for old negative pictures than for new negative or old neutral pictures. Past studies revealed that the frontopolar OFC allows for updating the affective values of stimuli in reversal learning or extinction of conditioning [e.g., Izquierdo, A., & Murray, E. A. Opposing effects of amygdala and orbital PFC lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 22, 2341–2346, 2005]; our findings suggest that it plays a more general role in updating associations to emotional stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images’ subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite its high toll on society, there has been little recent improvement in treatment efficacy for Major Depressive Disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting state functional connectivity predicted response to treatment with rapid transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased sgACC-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have revealed abnormalities in resting-state functional connectivity in those with major depressive disorder specifically in areas such as the dorsal anterior cingulate, thalamus, amygdala, the pallidostriatum and subgenual cingulate. However, the effect of antidepressant medications on human brain function is less clear and the effect of these drugs on resting-state functional connectivity is unknown. Forty volunteers matched for age and gender with no previous psychiatric history received either citalopram (SSRI; selective serotonergic reuptake inhibitor), reboxetine (SNRI; selective noradrenergic reuptake inhibitor) or placebo for 7 days in a double-blind design. Using resting-state functional magnetic resonance imaging and seed based connectivity analysis we selected the right nucleus accumbens, the right amygdala, the subgenual cingulate and the dorsal medial prefrontal cortex as seed regions. Mood and subjective experience were also measured before and after drug administration using self-report scales. Despite no differences in mood across the three groups, we found reduced connectivity between the amygdala and the ventral medial prefrontal cortex in the citalopram group and the amygdala and the orbitofrontal cortex for the reboxetine group. We also found reduced striatal-orbitofrontal cortex connectivity in the reboxetine group. These data suggest that antidepressant medications can decrease resting-state functional connectivity independent of mood change and in areas known to mediate reward and emotional processing in the brain. We conclude that hypothesis-driven seed based analysis of resting-state fMRI supports the proposition that antidepressant medications might work by normalising the elevated resting-state functional connectivity seen in depressed patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuropeptide substance P and its receptor NK1 have been implicated in emotion, anxiety and stress in preclinical studies. However, the role of NK1 receptors in human brain function is less clear and there have been inconsistent reports of the value of NK1 receptor antagonists in the treatment of clinical depression. The present study therefore aimed to investigate effects of NK1 antagonism on the neural processing of emotional information in healthy volunteers. Twenty-four participants were randomized to receive a single dose of aprepitant (125 mg) or placebo. Approximately 4 h later, neural responses during facial expression processing and an emotional counting Stroop word task were assessed using fMRI. Mood and subjective experience were also measured using self-report scales. As expected a single dose of aprepitant did not affect mood and subjective state in the healthy volunteers. However, NK1 antagonism increased responses specifically during the presentation of happy facial expressions in both the rostral anterior cingulate and the right amygdala. In the emotional counting Stroop task the aprepitant group had increased activation in both the medial orbitofrontal cortex and the precuneus cortex to positive vs. neutral words. These results suggest consistent effects of NK1 antagonism on neural responses to positive affective information in two different paradigms. Such findings confirm animal studies which support a role for NK1 receptors in emotion. Such an approach may be useful in understanding the effects of novel drug treatments prior to full-scale clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In probabilistic decision tasks, an expected value (EV) of a choice is calculated, and after the choice has been made, this can be updated based on a temporal difference (TD) prediction error between the EV and the reward magnitude (RM) obtained. The EV is measured as the probability of obtaining a reward x RM. To understand the contribution of different brain areas to these decision-making processes, functional magnetic resonance imaging activations related to EV versus RM (or outcome) were measured in a probabilistic decision task. Activations in the medial orbitofrontal cortex were correlated with both RM and with EV and confirmed in a conjunction analysis to extend toward the pregenual cingulate cortex. From these representations, TD reward prediction errors could be produced. Activations in areas that receive from the orbitofrontal cortex including the ventral striatum, midbrain, and inferior frontal gyrus were correlated with the TD error. Activations in the anterior insula were correlated negatively with EV, occurring when low reward outcomes were expected, and also with the uncertainty of the reward, implicating this region in basic and crucial decision-making parameters, low expected outcomes, and uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Umami taste is produced by glutamate acting on a fifth taste system. However, glutamate presented alone as a taste stimulus is not highly pleasant, and does not act synergistically with other tastes (sweet, salt, bitter and sour). We show here that when glutamate is given in combination with a consonant, savory, odour (vegetable), the resulting flavor can be much more pleasant. Moreover, we showed using functional brain imaging with fMRI that the glutamate taste and savory odour combination produced much greater activation of the medial orbitofrontal cortex and pregenual cingulate cortex than the sum of the activations by the taste and olfactory components presented separately. Supralinear effects were much less (and significantly less) evident for sodium chloride and vegetable odour. Further, activations in these brain regions were correlated with the pleasantness and fullness of the flavor, and with the consonance of the taste and olfactory components. Supralinear effects of glutamate taste and savory odour were not found in the insular primary taste cortex. We thus propose that glutamate acts by the nonlinear effects it can produce when combined with a consonant odour in multimodal cortical taste-olfactory convergence regions. We propose the concept that umami can be thought of as a rich and delicious flavor that is produced by a combination of glutamate taste and a consonant savory odour. Glutamate is thus a flavor enhancer because of the way that it can combine supralinearly with consonant odours in cortical areas where the taste and olfactory pathways converge far beyond the receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Sustained attention problems are common in people with autism spectrum disorder (ASD) and may have significant implications for the diagnosis and management of ASD and associated comorbidities. Furthermore, ASD has been associated with atypical structural brain development. The authors used functional MRI to investigate the functional brain maturation of attention between childhood and adulthood in people with ASD. Method Using a parametrically modulated sustained attention/vigilance task, the authors examined brain activation and its linear correlation with age between childhood and adulthood in 46 healthy male adolescents and adults (ages 11–35 years) with ASD and 44 age- and IQ-matched typically developing comparison subjects. Results Relative to the comparison group, the ASD group had significantly poorer task performance and significantly lower activation in inferior prefrontal cortical, medial prefrontal cortical, striato-thalamic, and lateral cerebellar regions. A conjunction analysis of this analysis with group differences in brain-age correlations showed that the comparison group, but not the ASD group, had significantly progressively increased activation with age in these regions between childhood and adulthood, suggesting abnormal functional brain maturation in ASD. Several regions that showed both abnormal activation and functional maturation were associated with poorer task performance and clinical measures of ASD and inattention. Conclusions The results provide first evidence that abnormalities in sustained attention networks in individuals with ASD are associated with underlying abnormalities in the functional brain maturation of these networks between late childhood and adulthood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we examined whether and how brief viewing of positive and negative images influences subsequent understanding of solutions to insight problems. For each trial, participants were first presented with an insight problem and then briefly viewed a task-irrelevant positive, negative, or neutral image (660 ms), which was followed by the solution to the problem. In our behavioral study (Study 1), participants were faster to report that they understood the solutions following positive images, and were slower to report it following negative images. A subsequent fMRI study (Study 2) revealed enhanced activity in the angular gyrus and medial prefrontal cortex (MPFC) while viewing solutions following positive, as compared with negative, images. In addition, greater activation of the angular gyrus was associated with more rapid understanding of the solutions. These results suggest that brief viewing of positive images enhances activity in the angular gyrus and MPFC, which results in facilitation of understanding solutions to insight problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate whether the saliency effect for word beginnings reported in children with Dyslexia (Marshall & van der Lely, 2009) can be found also in TD children. Thirty-four TD Italian children aged 8-10 completed two specifically designed tasks: a production task and a perception task. Both tasks used nonwords containing clusters consisting of plosive plus liquid (eg. pl). Clusters could be either in a stressed or in an unstressed syllable, and could be either in initial position (first syllable) or in medial position (second syllable). In the production task children were asked to repeat the non-words. In the perception task, the children were asked to discriminate between two nonwords differing in one phoneme belonging to a cluster by reporting whether two repetitions were the same or different. Results from the production task showed that children are more accurate in repeating stressed than unstressed syllables, but there was no difference with respect to position of the cluster. Results from the perception task showed that children performed more accurately when discriminating word initial contrasts than when discriminating word medial contrasts, especially if the cluster was unstressed. Implications of this finding for clinical assessments are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Cluttering is a fluency disorder characterised by overly rapid or jerky speech patterns that compromise intelligibility. The neural correlates of cluttering are unknown but theoretical accounts implicate the basal ganglia and medial prefrontal cortex. Dysfunction in these brain areas would be consistent with difficulties in selection and control of speech motor programs that are characteristic of speech disfluencies in cluttering. There is a surprising lack of investigation into this disorder using modern imaging techniques. Here, we used functional MRI to investigate the neural correlates of cluttering. Method We scanned 17 adults who clutter and 17 normally fluent control speakers matched for age and sex. Brain activity was recorded using sparse-sampling functional MRI while participants viewed scenes and either (i) produced overt speech describing the scene or (ii) read out loud a sentence provided that described the scene. Speech was recorded and analysed off line. Differences in brain activity for each condition compared to a silent resting baseline and between conditions were analysed for each group separately (cluster-forming threshold Z > 3.1, extent p < 0.05, corrected) and then these differences were further compared between the two groups (voxel threshold p < 0.01, extent > 30 voxels, uncorrected). Results In both conditions, the patterns of activation in adults who clutter and control speakers were strikingly similar, particularly at the cortical level. Direct group comparisons revealed greater activity in adults who clutter compared to control speakers in the lateral premotor cortex bilaterally and, as predicted, on the medial surface (pre-supplementary motor area). Subcortically, adults who clutter showed greater activity than control speakers in the basal ganglia. Specifically, the caudate nucleus and putamen were overactive in adults who clutter for the comparison of picture description with sentence reading. In addition, adults who clutter had reduced activity relative to control speakers in the lateral anterior cerebellum bilaterally. Eleven of the 17 adults who clutter also stuttered. This comorbid diagnosis of stuttering was found to contribute to the abnormal overactivity seen in the group of adults who clutter in the right ventral premotor cortex and right anterior cingulate cortex. In the remaining areas of abnormal activity seen in adults who clutter compared to controls, the subgroup who clutter and stutter did not differ from the subgroup who clutter but do not stutter. Conclusions Our findings were in good agreement with theoretical predictions regarding the neural correlates of cluttering. We found evidence for abnormal function in the basal ganglia and their cortical output target, the medial prefrontal cortex. The findings are discussed in relation to models of cluttering that point to problems with motor control of speech.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cognitive functions such as attention and memory are known to be impaired in End Stage Renal Disease (ESRD), but the sites of the neural changes underlying these impairments are uncertain. Patients and controls took part in a latent learning task, which had previously shown a dissociation between patients with Parkinson’s disease and those with medial temporal damage. ESRD patients (n=24) and age and education-matched controls (n=24) were randomly assigned to either an exposed or unexposed condition. In Phase 1 of the task, participants learned that a cue (word) on the back of a schematic head predicted that the subsequently seen face would be smiling. For the exposed (but not unexposed) condition, an additional (irrelevant) colour cue was shown during presentation. In Phase 2, a different association, between colour and facial expression, was learned. Instructions were the same for each phase: participants had to predict whether the subsequently viewed face was going to be happy or sad. No difference in error rate between the groups was found in Phase 1, suggesting that patients and controls learned at a similar rate. However, in Phase 2, a significant interaction was found between group and condition, with exposed controls performing significantly worse than unexposed (therefore demonstrating learned irrelevance). In contrast, exposed patients made a similar number of errors to unexposed in Phase 2. The pattern of results in ESRD was different from that previously found in Parkinson’s disease, suggesting a different neural origin.