977 resultados para Mechanical Attrition Treatment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

• At common law, a competent adult can refuse life-sustaining medical treatment, either contemporaneously or through an advance directive which will operate at a later time when the adult’s capacity is lost. • Legislation in most Australian jurisdictions also provides for a competent adult to complete an advance directive that refuses life-sustaining medical treatment. • At common law, a court exercising its parens patriae jurisdiction can consent to, or authorise, the withdrawal or withholding of life-sustaining medical treatment from an adult or child who lacks capacity if that is in the best interests of the person. A court may also declare that the withholding or withdrawal of treatment is lawful. • Guardianship legislation in all jurisdictions allows a substitute decision-maker, in an appropriate case, to refuse life-sustaining medical treatment for an adult who lacks capacity. • In terms of children, a parent may refuse life-sustaining medical treatment for his or her child if it is in the child’s best interests. • While a refusal of life-sustaining medical treatment by a competent child may be valid, this decision can be overturned by a court. • At common law and generally under guardianship statutes, demand for futile treatment need not be complied with by doctors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Australian sugar industry, sugar cane is smashed into a straw like material by hammers before being squeezed between large rollers to extract the sugar juice. The straw like material is initially called prepared cane and then bagasse as it passes through successive roller milling units. The sugar cane materials are highly compressible, have high moisture content, are fibrous, and they resemble some peat soils in both appearance and mechanical behaviour. A promising avenue to improve the performance of milling units for increased throughput and juice extraction, and to reduce costs is by modelling of the crushing process. To achieve this, it is believed necessary that milling models should be able to reproduce measured bagasse behaviour. This investigation sought to measure the mechanical (compression, shear, and volume) behaviour of prepared cane and bagasse, to identify limitations in currently used material models, and to progress towards a material model that can predict bagasse behaviour adequately. Tests were carried out using a modified direct shear test equipment and procedure at most of the large range of pressures occurring in the crushing process. The investigation included an assessment of the performance of the direct shear test for measuring bagasse behaviour. The assessment was carried out using finite element modelling. It was shown that prepared cane and bagasse exhibited critical state behavior similar to that of soils and the magnitudes of material parameters were determined. The measurements were used to identify desirable features for a bagasse material model. It was shown that currently used material models had major limitations for reproducing bagasse behaviour. A model from the soil mechanics literature was modified and shown to achieve improved reproduction while using magnitudes of material parameters that better reflected the measured values. Finally, a typical three roller mill pressure feeder configuration was modelled. The predictions and limitations were assessed by comparison to measured data from a sugar factory.