1000 resultados para Mass transit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first observational evidence of the near-Sun distortion of the leading edge of a coronal mass ejection (CME) by the ambient solar wind into a concave structure. On 2007 November 14, a CME was observed by coronagraphs onboard the STEREO-B spacecraft, possessing a circular cross section. Subsequently the CME passed through the field of view of the STEREO-B Heliospheric Imagers where the leading edge was observed to distort into an increasingly concave structure. The CME observations are compared to an analytical flux rope model constrained by a magnetohydrodynamic solar wind solution. The resultant bimodal speed profile is used to kinematically distort a circular structure that replicates the initial shape of the CME. The CME morphology is found to change rapidly over a relatively short distance. This indicates an approximate radial distance in the heliosphere where the solar wind forces begin to dominate over the magnetic forces of the CME influencing the shape of the CME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An update of Owens et al. (2008) shows that the relationship between the coronal mass ejection (CME) rate and the heliospheric magnetic field strength predicts a field floor of less than 4 nT at 1 AU. This implies that the record low values measured during this solar minimum do not necessarily contradict the idea that open flux is conserved. The results are consistent with the hypothesis that CMEs add flux to the heliosphere and interchange reconnection between open flux and closed CME loops subtracts flux. An existing model embracing this hypothesis, however, overestimates flux during the current minimum, even though the CME rate has been low. The discrepancy calls for reasonable changes in model assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 15-17 February 2008, a CME with an approximately circular cross section was tracked through successive images obtained by the Heliospheric Imager (HI) instrument onboard the STEREO-A spacecraft. Reasoning that an idealised flux rope is cylindrical in shape with a circular cross-section, best fit circles are used to determine the radial width of the CME. As part of the process the radial velocity and longitude of propagation are determined by fits to elongation-time maps as 252±5 km/s and 70±5° respectively. With the longitude known, the radial size is calculated from the images, taking projection effects into account. The radial width of the CME, S (AU), obeys a power law with heliocentric distance, R, as the CME travels between 0.1 and 0.4 AU, such that S=0.26 R0.6±0.1. The exponent value obtained is compared to published studies based on statistical surveys of in situ spacecraft observations of ICMEs between 0.3 and 1.0 AU, and general agreement is found. This paper demonstrates the new opportunities provided by HI to track the radial width of CMEs through the previously unobservable zone between the LASCO field of view and Helios in situ measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME will move the reconnected open flux by at least the CME footpoint separation distance. Since the polarity of CME footpoints tends to follow a pattern similar to the Hale cycle of sunspot polarity, repeated CME eruption and subsequent reconnection will naturally result in latitudinal transport of open solar flux. We demonstrate how this process can reverse the coronal and heliospheric fields, and we calculate that the amount of flux involved is sufficient to accomplish the reversal within the 11 years of the solar cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test for magnetic flux buildup in the heliosphere from coronal mass ejections (CMEs), we simulate heliospheric flux as a constant background open flux with a time-varying interplanetary CME (ICME) contribution. As flux carried by ejecta can only contribute to the heliospheric flux budget while it remains closed, the ICME flux opening rate is an important factor. Two separate forms for the ICME flux opening rate are considered: (1) constant and (2) exponentially decaying with time. Coronagraph observations are used to determine the CME occurrence rates, while in situ observations are used to estimate the magnetic flux content of a typical ICME. Both static equilibrium and dynamic simulations, using the constant and exponential ICME flux opening models, require flux opening timescales of ∼50 days in order to match the observed doubling in the magnetic field intensity at 1 AU over the solar cycle. Such timescales are equivalent to a change in the ICME closed flux of only ∼7–12% between 1 and 5 AU, consistent with CSE signatures; no flux buildup results. The dynamic simulation yields a solar cycle flux variation with high variability that matches the overall variability of the observed magnetic field intensity remarkably well, including the double peak forming the Gnevyshev gap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of the non-radial flows (NRFs) during nearly five years of interplanetary observations revealed the average non-radial speed of the solar wind flows to be �30 km/s, with approximately one-half of the large (>100 km/s) NRFs associated with ICMEs. Conversely, the average non-radial flow speed upstream of all ICMEs is �100 km/s, with just over one-third preceded by large NRFs. These upstream flow deflections are analysed in the context of the large-scale structure of the driving ICME. We chose 5 magnetic clouds with relatively uncomplicated upstream flow deflections. Using variance analysis it was possible to infer the local axis orientation, and to qualitatively estimate the point of interception of the spacecraft with the ICME. For all 5 events the observed upstream flows were in agreement with the point of interception predicted by variance analysis. Thus we conclude that the upstream flow deflections in these events are in accord with the current concept of the large scale structure of an ICME: a curved axial loop connected to the Sun, bounded by a curved (though not necessarily circular)cross section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching −263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives were to measure the effects of transition and supplemental barley or rumen-protected protein on visceral tissue mass in dairy cows and the effects of transition and barley on rumen volume and liquid turnover. Cows were individually fed a grass silage-based gestation ration to meet energy and protein requirements for body weight stasis beginning 6 wk before expected calving. A corn silage-based lactation ration was individually fed ad libitum after calving. In the visceral mass study, 36 cows were randomly assigned to one of 3 dietary treatments: basal ration or basal ration plus either 800 g dry matter (DM) of barley meal per day or 750 g DM of rumen-protected soybean protein per day. Cows were slaughtered at 21 and 7 d before expected calving date or at 10 and 22 d postpartum. Visceral mass and rumen papillae characteristics were measured. Diets had little effect on visceral mass. The mass of the reticulo-rumen, small intestine, large intestine, and liver was, or tended to be, greater at 22 d postpartum but not at 10 d postpartum before DM intake had increased. Rumen papillae mass increased at 10 d postpartum, perhaps in response to increased concentrates. Mesenteric fat decreased after calving, reflecting body fat mobilization. Ten rumen-cannulated cows were fed the basal gestation ration alone or supplemented with 880 g of barley meal DM. Rumen volumes and liquid dilution rates were measured at 17 and 8 d before calving and at 10, 20, and 31 d postpartum. Feeding barley had no effects. After calving, rumen DM volume and liquid dilution rate increased, but liquid volume did not increase. Changes in gastrointestinal and liver mass during transition were apparently a consequence of changes in DM intake and nutrient supply and not initiation of lactation per se.