978 resultados para Maritime passenger transport
Resumo:
P. monodon spawners, transported from maturation pens suffer from stress which in turn may lead to lowered spawning rate or fertility. Spawning the females in the maturation site and transporting the eggs to the hatchery site is being considered as an alternative. Egg transport costs may be reduced to a minimum by using eggs from ablated spawners, transported at high density with no aeration. Experiments on higher egg densities as well as on transport of nauplii should, however, be undertaken.
Resumo:
This study was made as an attempt to investigate the optimum packing density and the ice quantity suitable for the transport of Penaeus monodon juveniles. The results revealed that prawns of 40 mg size can be packed to as much as 3,000 per bag. While packing densities above 3,000 per bag containing 8 L seawater and 16 L oxygen can be used only for short transport periods. On the other hand in the ice-quantity experiment, mortality rate was less than 1% in all the bags containing 300 g, 600 g, 900 g and 1200 g of ice. A packing temperature of 20~’C must be maintained hence, 50 g of ice per hour should be allowed per box, counting from the moment the box is sealed to the time it is estimated to be opened.
Resumo:
The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients