992 resultados para Mansfeld, Ernst vonMansfeld, Ernst vonErnstMansfeldvon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Several conversion tables and formulas have been suggested to correct applanation intraocular pressure (IOP) for central corneal thickness (CCT). CCT is also thought to represent an independent glaucoma risk factor. In an attempt to integrate IOP and CCT into a unified risk factor and avoid uncertain correction for tonometric inaccuracy, a new pressure-to-cornea index (PCI) is proposed. METHODS: PCI (IOP/CCT(3)) was defined as the ratio between untreated IOP and CCT(3) in mm (ultrasound pachymetry). PCI distribution in 220 normal controls, 53 patients with normal-tension glaucoma (NTG), 76 with ocular hypertension (OHT), and 89 with primary open-angle glaucoma (POAG) was investigated. PCI's ability to discriminate between glaucoma (NTG+POAG) and non-glaucoma (controls+OHT) was compared with that of three published formulae for correcting IOP for CCT. Receiver operating characteristic (ROC) curves were built. RESULTS: Mean PCI values were: Controls 92.0 (SD 24.8), NTG 129.1 (SD 25.8), OHT 134.0 (SD 26.5), POAG 173.6 (SD 40.9). To minimise IOP bias, eyes within the same 2 mm Hg range between 16 and 29 mm Hg (16-17, 18-19, etc) were separately compared: control and NTG eyes as well as OHT and POAG eyes differed significantly. PCI demonstrated a larger area under the ROC curve (AUC) and significantly higher sensitivity at fixed 80% and 90% specificities compared with each of the correction formulas; optimum PCI cut-off value 133.8. CONCLUSIONS: A PCI range of 120-140 is proposed as the upper limit of "normality", 120 being the cut-off value for eyes with untreated pressures or=22 mm Hg. PCI may reflect individual susceptibility to a given IOP level, and thus represent a glaucoma risk factor. Longitudinal studies are needed to prove its prognostic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implantation of a ventricular assist device (VAD) reduces short-term mortality and morbidity and provides patients with reasonable quality of life even though it may also be a long-lasting emotional burden. This study was conducted to analyze the long-time emotional consequences of VAD implantation, followed by heart transplantation in patients and spouses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby, comparisons are performed between MC calculated dose distributions and those calculated by a pencil beam or the AAA algorithm. Interfacing this flexible and efficient MC environment with Eclipse allows a widespread use for all kinds of investigations from timing and benchmarking studies to clinical patient studies. Additionally, it is possible to add modules keeping the system highly flexible and efficient.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: