988 resultados para Magnetic separation


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a technique that stimulates the brain using a magnetic coil placed on the scalp. Since it is applicable to humans non-invasively, directly interfering with neural electrical activity, it is potentially a good tool to study the direct relationship between perceptual experience and neural activity. However, it has been difficult to produce a clear perceptible phenomenon with TMS of sensory areas, especially using a single magnetic pulse. Also, the biophysical mechanisms of magnetic stimulation of single neurons have been poorly understood.

In the psychophysical part of this thesis, perceptual phenomena induced by TMS of the human visual cortex are demonstrated as results of the interactions with visual inputs. We first introduce a method to create a hole, or a scotoma, in a flashed, large-field visual pattern using single-pulse TMS. Spatial aspects of the interactions are explored using the distortion effect of the scotoma depending on the visual pattern, which can be luminance-defined or illusory. Its similarity to the distortion of afterimages is also discussed. Temporal interactions are demonstrated in the filling-in of the scotoma with temporally adjacent visual features, as well as in the effective suppression of transient visual features. Also, paired-pulse TMS is shown to lead to different brightness modulations in transient and sustained visual stimuli.

In the biophysical part, we first develop a biophysical theory to simulate the effect of magnetic stimulation on arbitrary neuronal structure. Computer simulations are performed on cortical neuron models with realistic structure and channels, combined with the current injection that simulates magnetic stimulation. The simulation results account for general and basic characteristics of the macroscopic effects of TMS including our psychophysical findings, such as a long inhibitory effect, dependence on the background activity, and dependence on the direction of the induced electric field.

The perceptual effects and the cortical neuron model presented here provide foundations for the study of the relationship between perception and neural activity. Further insights would be obtained from extension of our model to neuronal networks and psychophysical studies based on predictions of the biophysical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra. The approaches developed here are aimed at resolving one of the fundamental problems of molecular spectroscopy, the apparent incompatibility in existing techniques between high information content (and therefore good species discrimination) and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established methods for trapping ions in high magnetic field and observing the trapping frequencies with high resolution (<1 Hz) and sensitivity (single ion) by electrical means. The introduction of a magnetic bottle field gradient couples the spin and spatial motions together and leads to a small spin-dependent force on the ion, which has been exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment.

A series of fundamental innovations is described m order to extend magnetic resonance to the higher masses of molecular ions (100 amu = 2x 10^5 electron masses) and smaller magnetic moments (nuclear moments = 10^(-3) of the electron moment). First, it is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Second, adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Third, methods of inducing spindependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency.

The dissertation explores the basic concepts behind ion trapping, adopting a variety of classical, semiclassical, numerical, and quantum mechanical approaches to derive spin-dependent effects, design experimental sequences, and corroborate results from one approach with those from another. The first proposal presented builds on Dehmelt's experiment by combining a "before and after" detection sequence with novel signal processing to reveal ESR spectra. A more powerful technique for ESR is then designed which uses axially synchronized spin transitions to perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. A third use of the magnetic bottle is to selectively trap ions with small initial kinetic energy. A dechirping algorithm corrects for undesired frequency shifts associated with damping by the measurement process.

The most general approach presented is spin-locked internally resonant ion cyclotron excitation, a true continuous Stern-Gerlach effect. A magnetic field gradient modulated at both the Larmor and cyclotron frequencies is devised which leads to cyclotron acceleration proportional to the transverse magnetic moment of a coherent state of the particle and radiation field. A preferred method of using this to observe NMR as an axial frequency shift is described in detail. In the course of this derivation, a new quantum mechanical description of ion cyclotron resonance is presented which is easily combined with spin degrees of freedom to provide a full description of the proposals.

Practical, technical, and experimental issues surrounding the feasibility of the proposals are addressed throughout the dissertation. Numerical ion trajectory simulations and analytical models are used to predict the effectiveness of the new designs as well as their sensitivity and resolution. These checks on the methods proposed provide convincing evidence of their promise in extending the wealth of magnetic resonance information to the study of collisionless ions via single-ion spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The model dependence inherent in hadronic calculations is one of the dominant sources of uncertainty in the theoretical prediction of the anomalous magnetic moment of the muon. In this thesis, we focus on the charged pion contribution and turn a critical eye on the models employed in the few previous calculations of $a_\mu^{\pi^+\pi^-}$. Chiral perturbation theory provides a check on these models at low energies, and we therefore calculate the charged pion contribution to light-by-light (LBL) scattering to $\mathcal{O}(p^6)$. We show that the dominant corrections to the leading order (LO) result come from two low energy constants which show up in the form factors for the $\gamma\pi\pi$ and $\gamma\gamma\pi\pi$ vertices. Comparison with the existing models reveal a potentially significant omission - none include the pion polarizability corrections associated with the $\gamma\gamma\pi\pi$ vertex. We next consider alternative models where the pion polarizability is produced through exchange of the $a_1$ axial vector meson. These have poor UV behavior, however, making them unsuited for the $a_\mu^{\pi^+\pi^-}$ calculation. We turn to a simpler form factor modeling approach, generating two distinct models which reproduce the pion polarizability corrections at low energies, have the correct QCD scaling at high energies, and generate finite contributions to $a_\mu^{\pi^+\pi^-}$. With these two models, we calculate the charged pion contribution to the anomalous magnetic moment of the muon, finding values larger than those previously reported: $a_\mu^\mathrm{I} = -1.779(4)\times10^{-10}\,,\,a_\mu^\mathrm{II} = -4.892(3)\times10^{-10}$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waking up from a dreamless sleep, I open my eyes, recognize my wife’s face and am filled with joy. In this thesis, I used functional Magnetic Resonance Imaging (fMRI) to gain insights into the mechanisms involved in this seemingly simple daily occurrence, which poses at least three great challenges to neuroscience: how does conscious experience arise from the activity of the brain? How does the brain process visual input to the point of recognizing individual faces? How does the brain store semantic knowledge about people that we know? To start tackling the first question, I studied the neural correlates of unconscious processing of invisible faces. I was unable to image significant activations related to the processing of completely invisible faces, despite existing reports in the literature. I thus moved on to the next question and studied how recognition of a familiar person was achieved in the brain; I focused on finding invariant representations of person identity – representations that would be activated any time we think of a familiar person, read their name, see their picture, hear them talk, etc. There again, I could not find significant evidence for such representations with fMRI, even in regions where they had previously been found with single unit recordings in human patients (the Jennifer Aniston neurons). Faced with these null outcomes, the scope of my investigations eventually turned back towards the technique that I had been using, fMRI, and the recently praised analytical tools that I had been trusting, Multivariate Pattern Analysis. After a mostly disappointing attempt at replicating a strong single unit finding of a categorical response to animals in the right human amygdala with fMRI, I put fMRI decoding to an ultimate test with a unique dataset acquired in the macaque monkey. There I showed a dissociation between the ability of fMRI to pick up face viewpoint information and its inability to pick up face identity information, which I mostly traced back to the poor clustering of identity selective units. Though fMRI decoding is a powerful new analytical tool, it does not rid fMRI of its inherent limitations as a hemodynamics-based measure.