1000 resultados para Madison formation
Resumo:
Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.
Resumo:
In the study, a novel microemulsion system, consisting of water, iso-propanol and n-butanol, was developed to synthesize the nanostructured La0.95Ba0.05MnAl11O19 catalyst with high surface area and catalytic activity for methane combustion.
Resumo:
The dissociation and isomerization reaction mechanism on the ground-state potential energy surface for CH2ClI are investigated by ab initio calculations. It is found that the isomer iso-CH2I-Cl can be produced from either the recombination of the photodissociation. fragments or the isomerization reaction of CH2ClI, rather than from isomerization reaction of iso-CH2Cl-I. Further explanations of experimental results are also presented. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T = 78 K and T = 390 K. The solid-liquid phase transition of the compound has been observed to be T-fus = (376.567 +/- 0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Delta(fus)H(m) = (26.273 +/- 0.013) kJ (.) mol(-1) and Delta(fus)S(m) = (69.770 +/- 0.035) J (.) K-1 (.) mol(-1). The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Delta(c)U(C14H12O, s) = -(7125.56 +/- 4.62) kJ (.) mol(-1) and Delta(c)H(m)degrees(C14H12O, s) = -(7131.76 +/- 4.62) kJ (.) mol(-1), by means of a homemade precision oxygen-bomb combustion calorimeter at T = (298.15 +/- 0.001) K. The standard molar enthalpy of formation of the compound has been derived, Delta(f)H(m)degrees (C14H12O, s) = -(92.36 +/- 0.97) kJ (.) mol(-1), from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The establishment and optimization of in vitro primmorph formation from a Chinese sponge, Stylotella agminata (Ridley), collected from the South China Sea, were investigated. Our aims were to identify the key factors affecting primmorph formation in this species and to optimize the technique for developing an in vitro primmorph culture system. The size of dissociated cells from S. agminata is relatively small, in the range between 5 and 10 mum. Round-shaped primmorphs of less than 100 gm were formed 3 days after transferring the dissociated cells into seawater containing Ca2+ and Mg2+. The effect of various cell dissociation conditions, inoculum. cell density, concentration of antibiotics, pH, and temperature was further investigated upon the formation of primmorphs. The time required for primmorph formation, primmorph size distribution, and the proliferating capability were microscopically documented. Healthy sponge S. agminata, inoculum. cell density and culture temperature play a critical role for the successful formation of primmorphs and that the microbial contamination will have to be controlled. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Due to a low mineral content, the sapropelic sediments depositing in Mangrove Lake, Bermuda, provide an excellent opportunity to explore for possible additions of sulfur to organic matter during the early stages of diagenesis. We evaluated early diagenetic organic sulfur transformations by monitoring the concentrations and stable isotopic compositions of a number of inorganic and organic sulfur pools, thereby accounting for all of the sulfur in the sediments. We have identified and quantified the following sulfur pools: porewater sulfate, porewater sulfide, elemental sulfur, pyrite sulfur, hydrolyzable organic sulfur (HYOS), chromium-reducible organic sulfur (CROS), and nonchromium-reducible organic sulfur (Non-CROS). Of the organic sulfur pools, the Non-CROS pool is by far the largest, followed by CROS, and finally HYOS. By 60 cm depth these pools contribute, respectively, to 85, 7.9, and 3.6% of the total solid phase sulfur. The HYOS pool is probably of biological origin and shows no interaction with the sulfur compounds produced during diagenesis. By contrast, CROS is produced, most likely, from the diagenetic addition of polysulfides to functionalized lipids in the upper, H2S-poor, elemental sulfur-rich, region of the sediment. A portion of this sulfur pool is unstable and decomposes on contact with the H2S-rich porewaters. The portion of CROS that remains in the sulfidic waters appears to readily exchange sulfur isotopes with H2S. While some of the Non-CROS pool is of biological origin, some is also formed by the diagenetic addition of sulfur to organic compounds in the upper H2S-poor region of the sediment. By contrast with CROS, Non-CROS is not diagenetically active in the H2S-rich porewaters. Overall, somewhere between 27 and 53 % of the organic sulfur buried in Mangrove Lake sediments is of diagenetic origin, with the remaining organic sulfur derived from biosynthesis. We extrapolate our Mangrove Lake results and calculate that in typical coastal marine sediments between 11 and 29 μmol g−1 of organic sulfur will form during early diagenesis, of which 2–5 μmol g−1 will be chromium reducible.
Resumo:
Funding and support for this project was provided by NSFC (Grant No. 40771015), and Key International Science and Technology Cooperation Projects (Grant No. 22007DFC20180). The authors also gratefully acknowledge the support of Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAD01B06-02). The authors thank the CDCs of Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen cities for field and laboratory technical support.