987 resultados para MYOCARDIAL INJURY
Resumo:
The mechanisms of statins relieving the no-reflow phenomenon and the effects of single-dose statins on it are not well known. This study sought to investigate the effects of inflammation on the no-reflow phenomenon in a rabbit model of acute myocardial infarction and reperfusion (AMI/R) and to evaluate the effects of single-dose atorvastatin on inflammation and myocardial no-reflow. Twenty-four New Zealand white male rabbits (5-6 months old) were randomized to three groups of eight: a sham-operated group, an AMI/R group, and an atorvastatin-treated group (10 mg/kg). Animals in the latter two groups were subjected to 4 h of coronary occlusion followed by 2 h of reperfusion. Serum levels of interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay. The expression of interferon gamma (IFN-γ) in normal and infarcted (reflow and no-reflow) myocardial tissue was determined by immunohistochemical methods. The area of no-reflow and necrosis was evaluated pathologically. Levels of serum IL-6 were significantly lower in the atorvastatin group than in the AMI/R group (P<0.01). Expression of IFN-γ in infarcted reflow and no-reflow myocardial tissue was also significantly lower in the atorvastatin group than in the AMI/R group. The mean area of no-reflow [47.01% of ligation area (LA)] was significantly smaller in the atorvastatin group than in the AMI/R group (85.67% of LA; P<0.01). The necrosis area was also significantly smaller in the atorvastatin group (85.94% of LA) than in the AMI/R group (96.56% of LA; P<0.01). In a secondary analysis, rabbits in the atorvastatin and AMI/R groups were divided into two groups based on necrosis area (90% of LA): a small group (<90% of LA) and a large group (>90% of LA). There was no significant difference in the area of no-reflow between the small (61.40% of LA) and large groups (69.87% of LA; P>0.05). Single-dose atorvastatin protected against inflammation and myocardial no-reflow and reduced infarct size during AMI/R in rabbits. No-reflow was not dependent on the reduction of infarct size.
Resumo:
The intestinal lymph pathway plays an important role in the pathogenesis of organ injury following superior mesenteric artery occlusion (SMAO) shock. We hypothesized that mesenteric lymph reperfusion (MLR) is a major cause of spleen injury after SMAO shock. To test this hypothesis, SMAO shock was induced in Wistar rats by clamping the superior mesenteric artery (SMA) for 1 h, followed by reperfusion for 2 h. Similarly, MLR was performed by clamping the mesenteric lymph duct (MLD) for 1 h, followed by reperfusion for 2 h. In the MLR+SMAO group rats, both the SMA and MLD were clamped and then released for reperfusion for 2 h. SMAO shock alone elicited: 1) splenic structure injury, 2) increased levels of malondialdehyde, nitric oxide (NO), intercellular adhesion molecule-1, endotoxin, lipopolysaccharide receptor (CD14), lipopolysaccharide-binding protein, and tumor necrosis factor-α, 3) enhanced activities of NO synthase and myeloperoxidase, and 4) decreased activities of superoxide dismutase and ATPase. MLR following SMAO shock further aggravated these deleterious effects. We conclude that MLR exacerbates spleen injury caused by SMAO shock, which itself is associated with oxidative stress, excessive release of NO, recruitment of polymorphonuclear neutrophils, endotoxin translocation, and enhanced inflammatory responses.
Resumo:
People who suffer from traumatic brain injury (TBI) often experience cognitive deficits in spatial reference and working memory. The possible roles of cyclooxygenase-1 (COX-1) in learning and memory impairment in mice with TBI are far from well known. Adult mice subjected to TBI were treated with the COX-1 selective inhibitor SC560. Performance in the open field and on the beam walk was then used to assess motor and behavioral function 1, 3, 7, 14, and 21 days following injury. Acquisition of spatial learning and memory retention was assessed using the Morris water maze on day 15 post-TBI. The expressions of COX-1, prostaglandin E2 (PGE2), interleukin (IL)-6, brain-derived neurotrophic factor (BDNF), platelet-derived growth factor BB (PDGF-BB), synapsin-I, and synaptophysin were detected in TBI mice. Administration of SC560 improved performance of beam walk tasks as well as spatial learning and memory after TBI. SC560 also reduced expressions of inflammatory markers IL-6 and PGE2, and reversed the expressions of COX-1, BDNF, PDGF-BB, synapsin-I, and synaptophysin in TBI mice. The present findings demonstrated that COX-1 might play an important role in cognitive deficits after TBI and that selective COX-1 inhibition should be further investigated as a potential therapeutic approach for TBI.
Resumo:
The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.
Resumo:
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.
Resumo:
MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decreased the mortality rate and improved the recovery of the righting reflex in TBI mice, and ii) differentially changed the levels of several miRNAs, upregulating some and downregulating others. Furthermore, we revealed global upregulation of miR-21, miR-92a, and miR-874 and downregulation of miR-138, let-7c, and miR-124 expression among the sham-non-runner, TBI-non-runner, and TBI-runner groups. Quantitative reverse transcription polymerase chain reaction data (RT-qPCR) indicated good consistency with the microarray results. Our microarray-based analysis of miRNA expression in mice cerebral cortex after TBI revealed that some miRNAs such as miR-21, miR-92a, miR-874, miR-138, let-7c, and miR-124 could be involved in the prevention and protection afforded by voluntary exercise in a TBI model.
Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats
Resumo:
Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.
Resumo:
Resistance training evokes myocardial adaptation; however, the effects of a single resistance exercise session on cardiac performance are poorly understood or investigated. This study aimed to investigate the effects of a single resistance exercise session on the myocardial contractility of spontaneously hypertensive rats (SHRs). Male 3-month-old SHRs were divided into two groups: control (Ct) and exercise (Ex). Control animals were submitted to sham exercise. Blood pressure was measured in conscious rats before the exercise session to confirm the presence of arterial hypertension. Ten minutes after the exercise session, the animals were anesthetized and killed, and the hearts were removed. Cardiac contractility was evaluated in the whole heart by the Langendorff technique and by isometric contractions of isolated left ventricular papillary muscles. SERCA2a, phospholamban (PLB), and phosphorylated PLB expression were investigated by Western blot. Exercise increased force development of isolated papillary muscles (Ex=1.0±0.1 g/mg vs Ct=0.63±0.2 g/mg, P<0.05). Post-rest contraction was greater in the exercised animals (Ex=4.1±0.4% vs Ct=1.7±0.2%, P<0.05). Papillary muscles of exercised animals developed greater force under increasing isoproterenol concentrations (P<0.05). In the isolated heart, exercise increased left ventricular isovolumetric systolic pressure (LVISP; Δ +39 mmHg; P<0.05) from baseline conditions. Hearts from the exercised rats presented a greater response to increasing diastolic pressure. Positive inotropic intervention to calcium and isoproterenol resulted in greater LVISP in exercised animals (P<0.05). The results demonstrated that a single resistance exercise session improved myocardial contractility in SHRs.
Resumo:
Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.
Resumo:
Cardiopulmonary bypass (CPB) with extracorporeal circulation produces changes in the immune system accompanied by an increase in proinflammatory cytokines and a decrease in anti-inflammatory cytokines. We hypothesize that dexmedetomidine (DEX) as an anesthetic adjuvant modulates the inflammatory response after coronary artery bypass graft surgery with mini-CPB. In a prospective, randomized, blind study, 12 patients (4 females and 8 males, age range 42-72) were assigned to DEX group and compared with a conventional total intravenous anesthesia (TIVA) group of 11 patients (4 females and 7 males). The endpoints used to assess inflammatory and biochemical responses to mini-CPB were plasma interleukin (IL)-1, IL-6, IL-10, interferon (INF)-γ, tumor necrosis factor (TNF)-α, C-reactive protein, creatine phosphokinase, creatine phosphokinase-MB, cardiac troponin I, cortisol, and glucose levels. These variables were determined before anesthesia, 90 min after beginning CPB, 5 h after beginning CPB, and 24 h after the end of surgery. Endpoints of oxidative stress, including thiobarbituric acid reactive species and delta-aminolevulinate dehydratase activity in erythrocytes were also determined. DEX+TIVA use was associated with a significant reduction in IL-1, IL-6, TNF-α, and INF-γ (P<0.0001) levels compared with TIVA (two-way ANOVA). In contrast, the surgery-induced increase in thiobarbituric acid reactive species was higher in the DEX+TIVA group than in the TIVA group (P<0.01; two-way ANOVA). Delta-aminolevulinate dehydratase activity was decreased after CPB (P<0.001), but there was no difference between the two groups. DEX as an adjuvant in anesthesia reduced circulating IL-1, IL-6, TNF-α, and INF-γ levels after mini-CPB. These findings indicate an interesting anti-inflammatory effect of DEX, which should be studied in different types of surgical interventions.
Resumo:
Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.
Resumo:
A previously healthy 19 year-old male presented to the hospital with anorexia, nausea, and vomiting. Laboratory studies were significant for hypercalcemia (peak calcium value of 14.8 mg/dL) and acute kidney injury (peak serum creatinine of 2.88 mg/dL). He admitted to using a parenteral formulation of vitamins A, D and E restricted for veterinary use containing 20,000,000 IU of vitamin A; 5,000,000 IU of vitamin D3; and 6,800 IU of vitamin E per 100 mL vial. The patient stated to have used close to 300 mL of the product over the preceding year. Interestingly, the young man was not interested in the massive amounts of vitamins that the product contained; he was only after the local effects of the oily vehicle. The swelling produced by the injection resulted in a silicone-like effect, which gave the impression of bigger muscles. Nevertheless, the product was absorbed and caused hypervitaminosis. The serum level of 25(OH) vitamin D was clearly elevated at 150 ng/mL (reference range from 30 to 60 ng/mL), but in most published cases of vitamin D toxicity, serum levels have been well above 200 ng/mL. His PTH level was undetectable and other potential causes of hypercalcemia were excluded. Therefore, we posit that the severity of the hypercalcemia observed in this case was the result of a synergistic effect of vitamins A and D. The patient was treated with normal saline, furosemide and zolendronic acid, with rapid normalization of calcium levels and renal function.