997 resultados para MESENTERIC RESISTANCE ARTERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Diabetic nephropathy is a leading cause of end-stage renal disease. Premature mortality is common in patients with nephropathy, largely due to cardiovascular disease. Genetic variants implicated in macrovascular disease are therefore excellent candidates to assess for association with diabetic nephropathy. Recent genome-wide association studies have identified a total of 15 single-nucleotide polymorphisms (SNPs) that are reproducibly associated with cardiovascular disease.

Methods. We initially assessed these SNPs for association in UK type 1 diabetic patients with (cases; n = 597) and without (controls; n = 502) nephropathy using iPLEXTM and TaqMan® assays. Replication studies were performed with DNA genotyped in a total of 2668 individuals from the British Isles.

Results. One SNP (rs4420638) on chromosome 19q13 was found to be significantly associated with diabetic nephropathy before (P = 0.0002) and after correction for multiple testing (Pcorrected = 0.002). We replicated this finding in a phenotypically similar case–control collection comprising 709 individuals with type 1 diabetes (P = 0.002; combined P < 0.00001; OR = 1.54, 95% CI: 1.29–1.84).

Conclusions. Our case–control data suggest that rs4420638, or a functional SNP in linkage disequilibrium with this SNP, may be associated with diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the capacity of resistance training to enhance the rapid and coordinated production of force by older people. Thirty adults (greater than or equal to 60 years) completed a visually guided aiming task that required the generation of isometric torque in 2 df about the elbow prior to and following a 4-week training period. Groups of six participants were allocated to two progressive ( 40 - 100% maximal voluntary contraction (MVC)) resistance-training (PRT) groups, to two constant low-load (10% MVC) training groups (CLO) and to one no-training control group. Training movements required the generation of either combined flexion and supination (FLESUP), or combined extension and supination (EXTSUP). In response to training, target acquisition times in the aiming task decreased for all groups; however, both the nature of the training load and the training movement influenced the pattern and magnitude of improvements (EXTSUP_ CLO: 36%, FLESUP_ PRT 26%, EXTSUP_ PRT 22%, FLESUP_ CLO 20%, CONTROL 15%). For one group that trained with progressively increasing loads, there arose a subsequent decrease in performance in one condition of the transfer task. For each group, these adaptations were accompanied by systematic changes in the coordination of muscles about the elbow joint, particularly the biceps brachii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n=8), or training involving finger abduction-adduction without external resistance (n=8). TMS was delivered at rest at intensities from 5% below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60% of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency=21.5+/-1.4 ms; TMS latency=23.4+/-1.4 ms; P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategics for the control of human movement are constrained by the neuroanatomical characteristics of the motor system. In particular, there is evidence that the capacity of muscles for producing force has a strong influence on the stability of coordination in certain movement tasks. In the present experiment, our aim was to determine whether physiological adaptations that cause relatively long-lasting changes in the ability of muscles to produce force can influence the stability of coordination in a systematic manner. We assessed the effects of resistance training on the performance of a difficult coordination task that required participants to synchronize or syncopate movements of their index finger with an auditory metronome. Our results revealed that training that increased isometric finger strength also enhanced the stability of movement coordination. These changes were accompanied by alterations in muscle recruitment patterns. In Particular, the trained muscles were recruited in a more consistent fashion following the programme of resistance training. These results indicate that resistance training produces functional adaptations of the neuroanatomical constraints that underlie the control of voluntary movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive activation of nuclear factor (NF)-kappa B is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappa B whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappa B activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappa B activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappa B activation in AIPC cells, increasing the transcription and expression of NF-kappa B-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappa B activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappa B or RNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappa B activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The British government's response to the London bombings sought to make the terror of that day foreign, even though it appeared largely domestic. This helped construct it as unusual, contingent, part of the uncontrollable ‘otherness’ of the ‘foreign’. However, it also drew the response into the arena of British foreign policy, where the ‘failing state’ has been the dominant conceptualisation of insecurity and terrorism, especially since September 11th. When the bombings are examined through the ‘failing state’ disturbing and important problems are uncovered. Primarily, the ‘failing state’ discourse deconstructs under the influence of the terrorism in London, revealing that Britain itself is a ‘failing state’ by its own description and producing a generalisation of state ‘failure’. It thereby reveals several possible sites for responding to and resisting the government's representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to chemotherapy ('drug resistance') is a fundamental problem that limits the effectiveness of many chemotherapies currently used to treat cancer. Drug resistance can occur due to a variety of mechanisms, such as increased drug inactivation, drug efflux from cancer cells, enhanced repair of chemotherapy-induced damage, activation of pro-survival pathways and inactivation of cell death pathways. In this article, we review some of the major mechanisms of drug resistance and discuss how new molecularly-targeted therapies are being increasingly used to overcome these resistance mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]