993 resultados para MALIGNANT MIXED TUMOR
Resumo:
Cancer testis antigens (CTAs) are expressed in a variety of malignant tumors but not in any normal adult tissues except germ cells and occasionally placenta. Because of this tumor-associated pattern of expression, CTAs are regarded as potential vaccine targets. The expression of CTAs in gastrointestinal stromal tumors (GIST) has not been analyzed systematically previously. The present study was performed to analyze the expression of CTA in GIST and to determine if CTA expression correlates with prognosis. Thirty-five GIST patients were retrospectively analyzed for their expression of CTAs by immunohistochemistry using the following monoclonal antibodies (mAb/antigen): MA454/MAGE-A1, M3H67/MAGE-A3, 57B/MAGE-A4, CT7-33/MAGE-C1 and E978/NY-ESO-1. Fourteen tumors (40%) expressed 1 or more of the 5 CTAs tested. Fourteen percent (n = 5/35) were positive for MAGE-A1, MAGE-A3 or MAGE-A4, respectively. Twenty-six percent (n = 9/35) stained positive for MAGE-C1 and 20% (n = 7/35) for NY-ESO-1. A highly significant correlation between CTA expression and tumor recurrence risk was observed (71% vs. 29%; p = 0.027). In our study population, the high-risk GIST expressed CTAs more frequently than low-risk GIST (p = 0.012). High-risk GISTs which stained positive for at least 1 CTA, recurred in 100% (n = 25) of the cases. This is the first study analyzing CTA expression in GIST and its prognostic value for recurrence. The CTA staining could add information to the individual patient prognosis and represent an interesting target for future treatment strategies.
Resumo:
We have determined the sequence of the first 1371 nucleotides at the 5' end of the genome of mouse mammary tumor virus using molecularly cloned proviral DNA of the GR virus strain. The most likely initiation codon used for the gag gene of mouse mammary tumor virus is the first one, located 312 nucleotides from the 5' end of the viral RNA. The 5' splicing site for the subgenomic mRNA's is located approximately 288 nucleotides downstream from the 5' end of the viral RNA. From the DNA sequence the amino acid sequence of the N-terminal half of the gag precursor protein, including p10 and p21, was deduced (353 amino acids).
Resumo:
Age and sex have been identified as predictors of outcome in malignant melanoma (MM). This aim of this multicentre, cross-sectional study was to analyse the role of age and sex as explanatory variables for the diagnosis of thin MM. A total of 2430 patients with MM were recruited. Cases of in situ-T1 MM were more frequent than T2-T4 MM (56.26% vs. 43.74%). Breslow thickness increased throughout decades of life (analysis of variance (ANOVA) p < 0.001), with a weak correlation between Breslow thickness and patient's age (r = 0.202, p < 0.001). Breslow thickness was significantly less in women (1.79 vs. 2.38 mm, p = 0.0001). Binary logistic regression showed a significant (p < 0.001) odds ratio for age 0-29 years (1.18), and 30-59 years (1.16), and for women (1.09). Age and sex explained 3.64% of the variation observed in Tis-T1 frequency (R2 = 0.0364). Age and sex appear to explain a low percentage of the variation in the early detection of MM.
Resumo:
Gangliocytic paragangliomas are rare tumors that almost exclusively occur within the second portion of the duodenum. Although these tumors generally have a benign clinical course, they have the potential to recur or metastasize to regional lymph nodes. The case report presented here describes a 57-year-old female patient with melena, progressive asthenia, anemia, and a mass in the second-third portion of the duodenum that was treated by local excision. The patient was diagnosed with a friable bleeding tumor. The histologic analysis showed that the tumor was a 4 cm gangliocytic paraganglioma without a malignant cell pattern. In the absence of local invasion or distant metastasis, endoscopic resection represents a feasible, curative therapy. Although endoscopic polypectomy is currently considered the treatment of choice, it is not recommended if the size of the tumor is > 3 cm and/or there is active or recent bleeding. Patients diagnosed with a gangliocytic paraganglioma should be closely followed-up for possible local recurrence.
Resumo:
BACKGROUND: Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.¦METHODS: Laser Doppler flow (FluxExplorer) and mole analyser (MA) score (FotoFinder) were applied to histologically verified melanocytic nevi (33) and malignant melanomas (12).¦RESULTS: Mean perfusion and MA scores were significantly increased in melanoma compared to nevi. However, applying an empirically determined threshold of 16% perfusion increase only 42% of the melanomas fulfilled the criterion of malignancy, whereas with the mole analyzer score 82% of the melanomas fulfilled the criterion of malignancy.¦CONCLUSION: Laser Doppler imaging is a highly sensitive technology to assess skin and skin tumor perfusion in vivo. Although mean perfusion is higher in melanomas compared to nevi the high numbers of false negative results hamper the use of this technology for early melanoma detection.
Resumo:
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family designated APRIL (for a proliferation-inducing ligand). Although transcripts of APRIL are of low abundance in normal tissues, high levels of mRNA are detected in transformed cell lines, and in human cancers of colon, thyroid, and lymphoid tissues in vivo. The addition of recombinant APRIL to various tumor cells stimulates their proliferation. Moreover, APRIL-transfected NIH-3T3 cells show an increased rate of tumor growth in nude mice compared with the parental cell line. These findings suggest that APRIL may be implicated in the regulation of tumor cell growth.
Resumo:
BACKGROUND: Extracapsular tumor spread (ECS) has been identified as a possible risk factor for breast cancer recurrence, but controversy exists regarding its role in decision making for regional radiotherapy. This study evaluates ECS as a predictor of local, axillary, and supraclavicular recurrence. PATIENTS AND METHODS: International Breast Cancer Study Group Trial VI accrued 1475 eligible pre- and perimenopausal women with node-positive breast cancer who were randomly assigned to receive three to nine courses of classical combination chemotherapy with cyclophosphamide, methotrexate, and fluorouracil. ECS status was determined retrospectively in 933 patients based on review of pathology reports. Cumulative incidence and hazard ratios (HRs) were estimated using methods for competing risks analysis. Adjustment factors included treatment group and baseline patient and tumor characteristics. The median follow-up was 14 years. RESULTS: In univariable analysis, ECS was significantly associated with supraclavicular recurrence (HR = 1.96; 95% confidence interval 1.23-3.13; P = 0.005). HRs for local and axillary recurrence were 1.38 (P = 0.06) and 1.81 (P = 0.11), respectively. Following adjustment for number of lymph node metastases and other baseline prognostic factors, ECS was not significantly associated with any of the three recurrence types studied. CONCLUSIONS: Our results indicate that the decision for additional regional radiotherapy should not be based solely on the presence of ECS.
Resumo:
In 2004, a 56-year-old woman was diagnosed with Stage IA follicular lymphoma in a cervical lymph node biopsy. The patient experienced total remission after local radiation therapy. In 2009, a control computed tomography scan evidenced a pelvic mass, prompting total hysterectomy. The latter harbored a 4.8-cm intramural uterine tumor corresponding to a mostly diffuse and focally nodular proliferation of medium to large cells, with extensive, periodic acid-Schiff negative, signet ring cell changes, and a pan-keratin negative, CD20+, CD10+, Bcl2+, Bcl6+ immunophenotype. Molecular genetic studies showed the same clonal IGH gene rearrangement in the lymph node and the uterus, establishing the uterine tumor as a relapse of the preceding follicular lymphoma, although no signet ring cells were evidenced at presentation. Uterine localization of lymphomas is rare, and lymphomas with signet ring cell features are uncommon. This exceptional case exemplifies a diagnostically challenging situation and expands the differential diagnosis of uterine neoplasms displaying signet ring cell morphology.
Resumo:
The sentinel or tumor-draining lymph node (tdLN) serves as a metastatic niche for many solid tumors and is altered via tumor-derived factors that support tumor progression and metastasis. tdLNs are often removed surgically, and therapeutic vaccines against tumor antigens are typically administered systemically or in non-tumor-associated sites. Although the tdLN is immune-suppressed, it is also antigen experienced through drainage of tumor-associated antigens (TAA), so we asked whether therapeutic vaccines targeting the tdLN would be more or less effective than those targeting the non-tdLN. Using LN-targeting nanoparticle (NP)-conjugate vaccines consisting of TAA-NP and CpG-NP, we compared delivery to the tdLN versus non-tdLN in two different cancer models, E.G7-OVA lymphoma (expressing the nonendogenous TAA ovalbumin) and B16-F10 melanoma. Surprisingly, despite the immune-suppressed state of the tdLN, tdLN-targeting vaccination induced substantially stronger cytotoxic CD8+ T-cell responses, both locally and systemically, than non-tdLN-targeting vaccination, leading to enhanced tumor regression and host survival. This improved tumor regression correlated with a shift in the tumor-infiltrating leukocyte repertoire toward a less suppressive and more immunogenic balance. Nanoparticle coupling of adjuvant and antigen was required for effective tdLN targeting, as nanoparticle coupling dramatically increased the delivery of antigen and adjuvant to LN-resident antigen-presenting cells, thereby increasing therapeutic efficacy. This work highlights the tdLN as a target for cancer immunotherapy and shows how its antigen-experienced but immune-suppressed state can be reprogrammed with a targeted vaccine yielding antitumor immunity.
Resumo:
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. STEM CELLS 2012;30:405-414.
Resumo:
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Resumo:
Tumor angiogenesis is an essential step in tumor progression and metastasis formation. Suppression of tumor angiogenesis results in the inhibition of tumor growth. Recent evidence indicates that vascular integrins, in particular alpha V beta 3, are important regulators of angiogenesis, including tumor angiogenesis. Integrin alpha V beta 3 antagonists, such as blocking antibodies or peptides, suppress tumor angiogenesis and tumor progression in many preclinical tumor models. The potential therapeutic efficacy of extracellular integrin antagonists in human cancer is currently being tested in clinical trials. Selective disruption of the tumor vasculature by high doses of tumor necrosis factor (TNF) and interferon gamma (IFN-gamma), and the antiangiogenic activity of nonsteroidal anti-inflammatory drugs are associated with the suppression of integrin alpha V beta 3 function and signaling in endothelial cells. Furthermore, expression of isolated integrin cytoplasmic domains disrupts integrin-dependent adhesion, resulting in endothelial cell detachment and apoptosis. These results confirm the critical role of vascular integrins in promoting endothelial cell survival and angiogenesis and suggest that intracellular targeting of integrin function and signaling may be an alternative strategy to extracellular integrin antagonists for the therapeutic inhibition of tumor angiogenesis.
Resumo:
Background: HSTL is a rare entity characterized by an infiltration of bone marrow, spleen and liver tissues by neoplastic gammadelta (gd) -more rarely alphabeta (ab)- T cells. Its pathogenesis is poorly understood. Our purpose was to identify the molecular signature of HSTL and explore molecular pathways implicated in its pathogenesis.Methods: Gene expression profiling and array CGH analysis of 10 HSTL samples (7gd, 3ab), 1 HSTL cell line (DERL2), 2 normal gd samples together with 16 peripheral T-cell lymphoma not otherwise specified (PTCL,NOS) and 7 nasal NK/T cell lymphomas were performed.Results: By unsupervised analysis, ab and gdHSTL clustered together remarkably separated from other lymphoma entities. Compared to PTCL, NOS, HSTL overexpresed genes encoding NK-associated molecules, oncogenes (VAV3) and the Sphingosine-1-phosphatase receptor 5 involved in cell trafficking. Compared to normal gd cells, HSTL overexpressed genes encoding NK-cell and multi drug resistance-associated molecules, transcription factors (RHOB), oncogenes (MAFB, FOS, JUN, VAV3) and the tyrosine kinase SYK whereas genes encoding cytotoxic molecules and the tumor suppressor gene AIM1 were among the most downregulated. By immunohistochemistry, SYK was demonstrated on HSTL cells with expression of its phosphorylated form in DERL2 cells by Western blot. Functional studies using a SYK inhibitor revealed a dose dependent increase of apoptotic DERL2 cells suggesting that SYK could be a candidate target for pharmacologic inhibition. Downexpression of AIM1 was validated by qRT-PCR. Methylation analysis of DERL2 genomic DNA treated by bisulfite demonstrated highly methylated CpG islands of AIM1. Genomic profiles confirmed recurrent isochromosome 7q (n=6/9) without alterations at 9q22 and 6q21 containing SYK and AIM1 genes, respectively.Conclusion: The current study identifies a distinct molecular signature for HSTL and highlights oncogenic pathways which offer rationale for exploring new therapeutic options such as SYK inhibitors. It supports the view of gd and ab HSTL as a single entity.
Resumo:
Ultrafractionation of radiation therapy is a novel regimen consisting of irradiating tumors several times daily, delivering low doses (<0.75 Gy) at which hyperradiosensitivity occurs. We recently demonstrated the high efficiency of ultrafractionated radiotherapy (RT) on glioma xenografts and report here on a phase II clinical trial to determine the safety, tolerability, and efficacy of an ultrafractionation regimen in patients with newly and inoperable glioblastoma (GBM). Thirty-one patients with histologically proven, newly diagnosed, and unresectable supratentorial GBM (WHO grade IV) were enrolled. Three daily doses of 0.75 Gy were delivered at least 4 hours apart, 5 days per week over 6-7 consecutive weeks (90 fractions for a total of 67.5 Gy). Conformal irradiation included the tumor bulk with a margin of 2.5 cm. The primary end points were safety, toxicity, and tolerability, and the secondary end points were overall survival (OS) and progression-free survival (PFS). Multivariate analysis was used to compare the OS and PFS with the EORTC-NCIC trial 26981-22981/CE.3 of RT alone vs radiation therapy and temozolomide (TMZ). The ultrafractionation radiation regimen was safe and well tolerated. No acute Grade III and/or IV CNS toxicity was observed. Median PFS and OS from initial diagnosis were 5.1 and 9.5 months, respectively. When comparing with the EORTC/NCIC trial, in both PFS and OS multivariate analysis, ultrafractionation showed superiority over RT alone, but not over RT and TMZ. The ultrafractionation regimen is safe and may prolong the survival of patients with GBM. Further investigation is warranted and a trial associating ultra-fractionation and TMZ is ongoing.