979 resultados para Latter lanthanides and yttrium
Resumo:
Using the constant addition technique, the coprecipitation of lanthanum, gadolinium, and lutetium with aragonite in seawater was experimentally investigated at 25 degrees C. Their concentrations in aragonite overgrowths were determined by inductive coupled plasma mass spectrometer. All these lanthanides were strongly enriched in aragonite overgrowths. The amount of lanthanum, gadolinium, and lutetium incorporated into aragonite accounted for 57%-99%, 50%-89%, and 40%-91% of their initial total amount, respectively. With the increase of aragonite precipitation rate, more lanthanides were incorporated into aragonite while their relative fraction in aragonite overgrowths decreased consistently. It indicated that the coprecipitation of lanthanides with aragonite was controlled by the kinetics of aragonite precipitation.
Resumo:
The partitioning of Y and Ho between CaCO3 (calcite and aragonite respectively) and seawater was experimentally investigated at 25 degrees C and I atm. Both Y and Ho were observed to be strongly partitioned into the overgrowths of calcite or aragonite. Their partition coefficients, D-Y and D-Ho, were determined to be similar to 520-1400 and similar to 700-1900 in calcite, similar to 1200-2400 and similar to 2400-4300 in aragonite, respectively. Y fractionates from Ho during the coprecipitation with either calcite or aragonite. Within our experimental conditions, the fractionation factor, k = D-Y/D-Ho, was determined to be similar to 0.62-0.77 in calcite and similar to 0.50-0.57 in aragonite, respectively. The aqueous complexation of Y and Ho, which is a function of solution chemistry, probably plays an important role in both the partitioning and the fractionation. Further analyses suggest that the difference in covalency between Y and Ho associated with changes in their coordination environments is the determinant factor to the Y-Ho fractionation in the H2CO3-CaCO3 System.
Resumo:
Chemical and isotopic data of the lava samples dredged in the southern Bach Ridge and the northern Italian Ridge of the Musicians Seamounts province, northeast of Hawaii. Although most of the samples analyzed are generally altered, a few are fresh. The latter exhibits similar geochemical and isotopic characteristics to normal MORB (Mid-Ocean Ridge Basalts). There are systematic geochemical trends from hotspot to mid-ocean ridge in the province. Incompatible element and isotopic variations suggest that the flow field had at least two distinct parental magmas, one with higher and one with lower MgO concentrations. The two parental magmas could be related by a magma mixing model. The major and trace element modeling shows that the two parental magmas could not have been produced by different degrees of melting of a homogeneous mantle source, but they are consistent with melting of a generally depleted mantle containing variable volumes of embedded enriched heterogeneity enriched interbeds.
Resumo:
With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society