977 resultados para Landscape architecture--Illinois--Lake County


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis assesses relationships between vegetation and topography and the impact of human tree-cutting on the vegetation of Union County during the early historical era (1755-1855). I use early warrant maps and forestry maps from the Pennsylvania historical archives and a warrantee map from the Union County courthouse depicting the distribution of witness trees and non-tree surveyed markers (posts and stones) in early European settlement land surveys to reconstruct the vegetation and compare vegetation by broad scale (mountains and valleys) and local scale (topographic classes with mountains and valleys) topography. I calculated marker density based on 2 km x 2 km grid cells to assess tree-cutting impacts. Valleys were mostly forests dominated by white oak (Quercus alba) with abundant hickory (Carya spp.), pine (Pinus spp.), and black oak (Quercus velutina), while pine dominated what were mostly pine-oak forests in the mountains. Within the valleys, pine was strongly associated with hilltops, eastern hemlock (Tsuga canadensis) was abundant on north slopes, hickory was associated with south slopes, and riparian zones had high frequencies of ash (Fraxinus spp.) and hickory. In the mountains, white oak was infrequent on south slopes, chestnut (Castanea dentata) was more abundant on south slopes and ridgetops than north slopes and mountain coves, and white oak and maple (Acer spp.) were common in riparian zones. Marker density analysis suggests that trees were still common over most of the landscape by 1855. The findings suggest there were large differences in vegetation between valleys and mountains due in part to differences in elevation, and vegetation differed more by topographic classes in the valleys than in the mountains. Possible areas of tree-cutting were evenly distributed by topographic classes, suggesting Europeans settlers were clearing land and harvesting timber in most areas of Union County.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.