982 resultados para Key-Value Stores
Resumo:
Cancer is one of the world's leading causes of death with a rising trend in incidence. These epidemiologic observations underline the need for novel treatment strategies. In this regard, a promising approach takes advantage of the adaptive effector mechanisms of the immune system, using T lymphocytes to specifically target and destroy tumour cells. However, whereas current approaches mainly depend on short-lived, terminally differentiated effector T cells, increasing evidence suggests that long lasting and maximum efficient immune responses are mediated by low differentiated memory T cells. These memory T cells should display characteristics of stem cells, such as longevity, self-renewal capacity and the ability to continuously give rise to further differentiated effectors. These stem celllike memory T (TSCM) cells are thought to be of key therapeutic value as they might not only attack differentiated tumour cells, but also eradicate the root cause of cancer, the cancer stem cells themselves. Thus, efforts are made to characterize TSCM cells and to identify the signalling pathways which mediate their induction. Recently, a human TSCM cell subset was described and the activation of the Wnt-ß-catenin signalling pathway by the drug TWS119 during naive CD8+ T (TN) cell priming was suggested to mediate their induction. However, a precise deciphering of the signalling pathways leading to TSCM cell induction and an in-depth characterization of in vitro induced and in vivo occurring TSCM cells remain to be performed. Here, evidence is presented that the induction of human and mouse CD8+ and CD4+ TSCM cells may be triggered by inhibition of mechanistic/mammalian target of rapamycin (mTOR) complex 1 with simultaneously active mTOR complex 2. This molecular mechanism arrests a fraction of activated TN cells in a stem cell-like differentiation state independently of the Wnt-ß-catenin signalling pathway. Of note, TWS119 was found to also inhibit mTORCl, thereby mediating the induction of TSCM cells. Suggesting an immunostimulatory effect, the acquired data broaden the therapeutic range of mTORCl inhibitors like rapamycin, which are, at present, exclusively used due to their immunosuppressive function. Furthermore, by performing broad metabolic analyses, a well-orchestrated interplay between intracellular signalling pathways and the T cells' metabolic programmes could be identified as important regulator of the T cells' differentiation fate. Moreover, in vitro induced CD4+ TSCM cells possess superior functional capacities and share fate-determining key factors with their naturally occurring counterparts, assessed by a first-time full transcriptome analysis of in vivo occurring CD4+ TN cell, TSCM cells and central memory (TCM) cells and in vitro induced CD4+ TSCM cells. Of interest, a group of 56 genes, with a unique expression profile in TSCM cells could be identified. Thus, a pharmacological mechanism allowing to confer sternness to activated TN cells has been found which might be highly relevant for the design of novel T cell-based cancer immunotherapies.
Resumo:
Selostus: Ekspanderkäsittelyn vaikutus vehnänleseen rehuarvoon lihasian ruokinnassa
Resumo:
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.
Resumo:
PURPOSE: To centrally assess estrogen receptor (ER) and progesterone receptor (PgR) levels by immunohistochemistry and investigate their predictive value for benefit of chemo-endocrine compared with endocrine adjuvant therapy alone in two randomized clinical trials for node-negative breast cancer. PATIENTS AND METHODS: International Breast Cancer Study Group Trial VIII compared cyclophosphamide, methotrexate, and fluorouracil (CMF) chemotherapy for 6 cycles followed by endocrine therapy with goserelin with either modality alone in pre- and perimenopausal patients. Trial IX compared three cycles of CMF followed by tamoxifen for 5 years versus tamoxifen alone in postmenopausal patients. Central Pathology Office reviewed 883 (83%) of 1,063 patients on Trial VIII and 1,365 (82%) of 1,669 on Trial IX and determined ER and PgR by immunohistochemistry. Disease-free survival (DFS) was compared across the spectrum of expression of each receptor using the Subpopulation Treatment Effect Pattern Plot methodology. RESULTS: Both receptors displayed a bimodal distribution, with substantial proportions showing no staining (receptor absent) and most of the remainder showing a high percentage of stained cells. Chemo-endocrine therapy yielded DFS superior to endocrine therapy alone for patients with receptor-absent tumors, and in some cases also for those with low levels of receptor expression. Among patients with ER-expressing tumors, additional prediction of benefit was suggested in absent or low PgR in Trial VIII but not in Trial IX. CONCLUSION: Low levels of ER and PgR are predictive of the benefit of adding chemotherapy to endocrine therapy. Low PgR may add further prediction among pre- and perimenopausal but not postmenopausal patients whose tumors express ER.
Resumo:
Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria.