982 resultados para Kalanchoe brasiliensis. Coirama branca. Saião. HPLC. Chemical marker. Flavonoids
Resumo:
Three-dimensional direct numerical simulation (DNS) of exhaust gas recirculation (EGR)-type turbulent combustion operated in moderate and intense low-oxygen dilution (MILD) condition has been carried out to study the flame structure and flame interaction. In order to achieve adequate EGR-type initial/inlet mixture fields, partially premixed mixture fields which are correlated with the turbulence are carefully preprocessed. The chemical kinetics is modelled using a skeletal mechanism for methane-air combustion. The results suggest that the flame fronts have thin flame structure and the direct link between the mean reaction rate and scalar dissipation rate remains valid in the EGR-type combustion with MILD condition. However, the commonly used canonical flamelet is not fully representative for MILD combustion. During the flame-flame interactions, the heat release rate increases higher than the maximum laminar flame value, while the gradient of progress variable becomes smaller than laminar value. It is also proposed that the reaction rate and the scalar gradient can be used as a marker for the flame interaction. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Optical motion capture systems suffer from marker occlusions resulting in loss of useful information. This paper addresses the problem of real-time joint localisation of legged skeletons in the presence of such missing data. The data is assumed to be labelled 3d marker positions from a motion capture system. An integrated framework is presented which predicts the occluded marker positions using a Variable Turn Model within an Unscented Kalman filter. Inferred information from neighbouring markers is used as observation states; these constraints are efficient, simple, and real-time implementable. This work also takes advantage of the common case that missing markers are still visible to a single camera, by combining predictions with under-determined positions, resulting in more accurate predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths remain constant over time; the system can thereby maintain a continuous data-flow. The marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time. Our methodology is tested against some of the most popular methods for marker prediction and the results confirm that our approach outperforms these methods in estimating both marker and CoR positions. © 2012 Springer-Verlag.
Resumo:
Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
An improved technique for transferring large area graphene grown by chemical vapor deposition on copper is presented. It is based on mechanical separation of the graphene/copper by H2 bubbles during H2O electrolysis, which only takes a few tens of seconds while leaving the copper cathode intact. A semi-rigid plastic frame in combination with thin polymer layer span on graphene gives a convenient way of handling- and avoiding wrinkles and holes in graphene. Optical and electrical characterizations prove the graphene quality is better than that obtained by traditional wet etching transfer. This technique appears to be highly reproducible and cost efficient. © 2013 American Institute of Physics.
Resumo:
Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.
Resumo:
Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO
Resumo:
用高效液相色谱 (HPLC)法研究了武汉东湖周年及围隔实验水柱颗粒物色素的组成及变化。共检测到约 2 0种色素 ,类胡萝卜素含量较高的有硅藻的标志色素岩藻黄素 ,隐藻的异黄素 ,蓝、绿藻的黄体素、玉米黄素及胡萝卜素。东湖叶绿素a的代谢产物主要为脱植基叶绿素a(全湖年均约占叶绿素a的 5 % ) ,而非脱镁叶绿素a或脱镁叶绿酸a。围隔实验结果表明 :叶绿素a与总浮游植物 (r =0 .84) ,叶绿素b与绿藻 (r=0 .77) ,岩藻黄素与硅藻 (r =0 6 8) ,异黄素与隐藻生物量 (r=0 .83