992 resultados para Java Advanced Imaging
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
Composite membranes based on Sulfonated poly(ether ether ketone) (SPEEK) and sulfonated organically modified Si-SBA-15 (S-SBA-15) were investigated with the purpose of increasing the proton conductivity. The novelty of the composite membranes was attributed to two special structures and different ion exchange capacities (IEC) of S-SBA-15 fillers, which were embedded in membranes. The typical hexagonal channels array of S-SBA-15 was confirmed by XRD and TEM. The regular vermiculate and amorphous structures of the inorganic fillers were proved by SEM. Composite membranes were prepared through common solvent casting method. SEM images indicated that the inorganic filler with regular structure dispersed homogeneously in the composite membranes, but the amorphous filler caused an agglomeration phenomenon at the same loading content.
Resumo:
In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.
Resumo:
Two mono-substituted manganese polyoxometalates, K6MnSiW11O39 (MnSiW11) and K8MnP2W17O61 (MnP2W17), have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific contrast agents for magnetic resonance imaging (MRI). T-1-relaxivities of 12.1 mM(-1) s(-1) for MnSiW11 and 4.7 mM(-1) s(-1) for MnP2W17 (400 MHz, 25 degrees C) were higher than or similar to that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in BSA and hTf solutions were also reported. After administration of MnSiW11 and MnP2W17 to Wistar rats, MR imaging showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 74.0 +/- 4.9% for the liver during the whole imaging period (90 min) and by 67.2 +/- 5.3% for kidney within 20-70 min after injection at 40 +/- 3 mu mol kg(-1) dose for MnSiW11. MnP2W17 induced 71.5 +/- 15.1%. enhancement for the liver in 10-45 min range and 73.1 +/- 3.2% enhancement for kidney within 5-40 min after injection at 39 +/- 3 mu mol kg(-1) dose. In vitro and in vivo study showed MnSiW11 and MnP2W17 being favorable candidates as the tissue-specific contrast agents for MRI.
Resumo:
Structures and crystal form transition of the novel aryl ether ketone polymer containing meta-phenylene linkage: PEKEKK(T/I) were investigated by wide angle X-ray diffraction (WAXD), imaging plates (IPs) and small angle X-ray scattering (SAXS). The energy of activation of the decomposition reaction and degree of crystallinity of PEKEKK(T/I) were determined by WAXD and thermo-gravimetric analysis (TGA), respectively. Results obtained from WAXD and IPs show that crystal forms I and II coexist in the PEKEKK(T/I) samples isothermally cold crystallized in the temperature range from 180degreesC to 240degreesC and only form I occurs in PEKEKK(T/I) samples isothermally cold crystallized at 270degreesC. The radius of gyration (Rg), thickness of microregions with electron-density fluctuations (E) and distribution of particle sizes were investigated by SAXS.
Resumo:
The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.
Resumo:
Biosensors have experienced rapid, extensive development. To maintain the bioactivity of biomolecules and to give the electrochemical output signal required, appropriate bioimmobilization matrices for biomolecules are critical.In this review, we describe some advanced membrane materials (including hydrogels, sol-gel-derived organic-inorganic composites and lipid membranes), introduce electrochemical biosensors based on bioimmobilization materials and describe their performance.Biosensors operating in extreme conditions and displaying direct electron transfer with electrodes based on these advanced membrane materials are attractive. Recent developments in nanomaterials include biosensors, so we emphasize the intersection of nanomaterials with advanced membrane materials in biosensors.
Resumo:
Arabinogalactan-Gd-DTPA was synthesized by the reaction of diethylenetriaminepenta-acetic acid (DTPA) bisanhydride with polysaccharide in dry DMSO and characterized by FTIR, elemental analysis and ICP-AES. Its stability was investigated by competition with Ca2+, EDTA, DTPA. The t(1)-relaxivity is 8.06 mmol(-1) . L . s(-1) in D2O, 8.48 mmol(-1) . L . s(-1) in 0.725 mmol . L-1 BSA, respectively. t(1)-weighted MR imaging of rat kidney and liver showed a remarkable enhancement post injection of Arabinogalactan-Gd-DTPA. The results indicate that the arabinogalactan-Gd-DTPA is a potential contrast agent for MRI.
Resumo:
Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.
Resumo:
Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Flavin adenine dinucleotide (FAD) was modified onto the highly oriented pyrolytic graphite (hopg) and glassy carbon electrode (gee) surfaces with three methods, respectively. Corresponding image analysis for FAD-modified hopg surfaces has been performed by scanning tunnelling microscope (STM) for the first time. The molecular resolution STM image of FAD adsorbed on the freshly-cleaved hopg was obtained, the quantitative size determination suggests that the FAD molecules adsorb side lying on the substrate surface. The anodization treatment of hopg surface yields many pits, which were clearly observed under STM. These pits provide active sites on the hopg surface for modification and the treated hopg can strongly adsorb FAD molecules, the latter exhibiting an irregular cluster structure on such a surface. When FAD was electrochemically deposited on the substrate surface, a chain structure was successfully observed. The adsorbed FAD on anodized glassy carbon electrode (gee) surface can effectively catalyze the reduction of glucose oxidase, hemoglobin and myoglobin, with a large decrease in the overvoltage, whereas the deposited FAD film exhibits excellent electrocatalysis towards dioxygen reduction.
Resumo:
The Research on Electroanalytical chemistry in China started mainly from the beginning of new China in 1949. It has already good basis and development nowadays. A review with references to the end of seventies has been published in "Reviews in Analytical Chemistry" 1) and in a book titled "Fifty years of Chinese Chemistry" edited by the Chinese Chemical Society in 1985 2). Since then more than thousand papers have been published, and it is impossible and also not necessary to describe all of them. This review only deals with the main progress of electroanalytical chemistry in China in recent years. Some new developed methodologies will be reviewed by S. Dong in the next article.