986 resultados para Irish Sea
Resumo:
Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Ex(max)/Em(max) = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm(Peak S)and 280/320 nm(Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A) and 330-350/420-480 nm(Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of then-L Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.
Resumo:
In this paper, the detailed morphology of Prorocentrum donghaiense Lu from both field samples and cultures was examined, and a taxonomic comparison was made between P donghaiense and some related Prorocentrum spp. using morphological and molecular data and other published information. There were distinct differences among these species in morphological characteristics that historically have been presented as conservative features. The discrepancies extended beyond that of individual variations within the same species due to environmental factors. Therefore, these morphological features may not be conservative but, rather, polymorphic depending on environmental conditions. Based on this analysis, we suggest that the high-biomass bloom-forming species in the East China Sea, previously reported as Prorocentrum dentatum Stein, is P donghaiense Lu. The species reported from the East China Sea and Japanese and Korean waters appear to be the same species. Molecular data also suggest that P. dentatum (CCMP1517) and P. donghaiense are genetically identical. Therefore, the geographic distribution of P. donghaiense may be much wider than expected. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Roles and distributions of various forms of nitrogen in biogeochemical cycling in the southern Yellow Sea surface sediments were investigated. The southern Yellow Sea could be divided into three regions (I, II and III) according to the proportion of fine-grained sediment in > 65%, 35-65% and < 35%, respectively. The ratios of different forms of nitrogen contents between each two of the three regions indicated that the nitrogen contents increased with the proportion of fine-grained sediment increasing. The quanta of exchangeable forms of nitrogen were similar in the three regions, while their releasing time increased from regions I to III, indicating that the cycle of nitrogen in fine-grained sediments was shorter than that in coarse-grained sediments. Nitrogen burial fluxes were also similar in these regions, while the burial efficiency increased from regions I to III. The highest burial efficiency was 30.21% in region III, indicating that more than 70% of nitrogen in the southern Yellow Sea surface sediments could be released to take part in biogeochemical recycling. When all the four forms of exchangeable nitrogen (nitrogen in ion exchangeable form (IEF-N), nitrogen in weak acid extractable form (WAEF-N), nitrogen in strong alkali extractable form (SAEF-N) and nitrogen in strong oxidant extractable form (SOEF-N)) were released to take part in recycling, their potential contributions were 80% (SOEF-N), 11% (IEF-N), 6% (SAEF-N), 3% (WAEF-N) respectively, which showed that SOEF-N was the predominant one, and its contribution to biogeochemical cycling was the highest. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Organochlorine contaminants including 12 polychlorinated biphenyl (PCB) congeners and 18 insecticides were determined in water, pore water and sediments of the Jiulong River Estuary and Western Xiamen Sea, China. The results showed that the levels of the total PCBs ranged from non-detectable to 1500 ngl(-1) in water, from 209 to 3870 ngl(-1) in pore water, and from 2.78 to 14.8 ng g(-1) dry weight in sediments. Total organochlorine insecticide concentrations were from below the limit of detection to 2480 ngl(-1) in water, from 267 to 33400 ngl(-1) in pore water, and from 4.22 to 46.3 ng g(-1) dry weight in sediments. Concentrations of PCBs and insecticides in pore water were significantly higher than those in surface water, due to the high affinity of these hydrophobic compounds for sediment phase. The PCB congeners with the highest concentrations were CB153, CB180 and CB194, which together accounted for 68-87% of total PCBs in water, pore water and sediment. Among the hexachlorocyclohexane (HCH) compounds, beta-HCH was found to be a major isomer. Analysis of 1,1,1-trichloro-2,2-bis-chlorophenyl-ethane (DDT) and its metabolites showed that 1, 1-dichloro-2[o-chlorophenyl]-2[p-chlorophenyl]-ethylene (DDE) was dominant in the group. In comparison to a 1998 study in the Western Xiamen Sea, levels of organochlorines were enhanced due probably to recent inputs and changes in sediments. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. delta(13)C values of saturated fatty acids in different organisms examined are from -25.6parts per thousand to -29.7parts per thousand with the average values ranging from -26.4parts per thousand to -28.2parts per thousand and the variance range of 11.8parts per thousand, between different organisms is also observed. Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9%.9-6.8parts per thousand compared to the same carbon number saturated fatty acids. delta(13)C values of n-alkanes range from -27.5%o to -29.7parts per thousand and their mean values, ranging from -28.6parts per thousand, to -28.9parts per thousand, are very close in different organisms. The mean difference in delta(13)C between the saturated fatty acids and n-alkanes is only 1.5parts per thousand, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within +/-2.0parts per thousand, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.
Resumo:
The distribution, feeding and oxygen consumption of Calanus sinicus were studied in August 2001 on a transect across Yellow Sea Cold Bottom Waters (YSCBW) and two additional transects nearby. The distribution of C. sinicus adults and copepodites stage CV appeared to be well correlated with water temperature. They tended to concentrate in the YSCBW (>10,000 ind. m(-2)) to avoid high surface temperature. Gut pigment contents varied from 0.44 to 2.53 ng chlorophyll a equivalents (chl a equiv.) ind.(-1) for adults, and from 0.24 to 2.24 ng chl a equiv. ind.(-1) for CV copepodites. We found no relationship between gut pigment contents and the ambient chl a concentrations. Although the gut evacuation rate constants are consistent with those measured for other copepods, their low gut pigment contents meant an estimated daily herbivorous ingestion of <3% of body carbon in the YSCBW and <10% outside the YSCBW. However, based on estimates of clearance rates, C. sinicus feeds actively whether in the YSCBW or not, so the low ingestion rates probably reflect shortage of food. Oxygen consumption rates of C. sinicus ranged from 0.21 to 0.84 mul O-2 ind.(-1) h(-1), with high rates often associated with high temperature. From the oxygen consumption rates, daily loss of body carbon was estimated to be 4.0-13.7%, which exceeds our estimates of their carbon ingestion rates. C. sinicus was probably not in diapause, either within or outside the YSCBW, but this cold-water layer provides C. sinicus with a refuge to live through the hot, low-food summer.
Resumo:
The distributions of different forms of nitrogen in the surface sediments of the southern Huanghai Sea are different and affected by various factors. The contents of IEF-N, SOEF-N and TN gradually decrease eastward, and those of SAEF-N northward, while those of WAEF-N westward. Around the seaport of the old Huanghe (Yellow) River, the contents of both SOEF-N and TN are the highest. Among all the factors, the content of fine sediment is the predominant factor to affect the distributions of different forms of nitrogen. The contents of IEF-N, SOEF-N, and TN have visibly positive correlation with the content of fine sediments, and the correlative coefficient is 0.68, 0.58 and 0.71 respectively, showing that the contents of the three forms of nitrogen increase with those of fine sediments. The content of WAEF-N is related to that of fine sediments to a certain extent, with a correlative coefficient of 0.35; while the content of SAEF-N is not related to that of fine sediments, showing that the content of SAEF-N is not controlled by fine grain-size fractions of sediments. In addition, the distributions of different forms of nitrogen are also interacted one another, and the contents of IEF-N and SOEF-N are obviously affected by TN, while those of inorganic nitrogen (WAEF-N, SAEF-N and IEF-N) are not affected by SOEF-N and TN obviously, although they are interacted each other.
Resumo:
A survey was carried out in the central and north part of the Huanghai Sea (34.5degrees similar to 37.0degreesN, 120.5degrees similar to124.0degreesE) during June 12 similar to 27, 2000. It was found that the abundance of marine flagellate ranged from 45 to 1278 cell/ml, 479 cell/ml in average. Flagellate was more abundant in the central part than in the north part of Huanghai Sea, and the abundance decreased with the increasing distance from the coast, showing a similar distribution pattern with isotherm. Vertically, high density of flagellate was always presented in the bottom of thermocline, and formed a dense accumulation in the central area of the Huanghai Sea Cold Water Mass. The effects of physical and biological factors on the distribution of marine flagellate in early summer were discussed. Water temperature (especially the existence of thermocline) rather than salinity showed significant effect on the distribution pattern of marine flagellate in the Huanghai Sea in early summer. When comparing the abundance of marine flagellate with that of other microorganisms, it revealed a comparatively stable relationship among these organhisms, with a ratio of heterotrophic bacteria: cyanobacteria: flagellate: dinoflagellate: ciliate being 10(5) 10(3):10(2):10(1):10(0).
Resumo:
During spring (April/May 1999) and autumn (September/October 1998) cruises in the Bohai Sea, China, copepods were the dominant components of mesozooplankton, the most abundant species being Calanus sinicus, Centropages mcmurrichi, Paracalanus parvus, Acartia bifilosa and Oithona similis. Pigment ingestion rates by three size classes of copepods (200-500, 500-1000 and > 1000 mum) were measured. In the south of the investigation area, gut pigment content (GPC), individual pigment-specific ingestion rates and grazing impacts on phytoplankton were lower in spring than in autumn. In the central area, GPC and individual pigment-specific ingestion rates were higher in spring than in autumn. The grazing impact on phytoplankton by the copepod assemblages was lower in spring than in autumn, however, because of the relatively smaller biomass in spring. In the western area where the Bohai Sea joins the Yellow Sea, GPC, individual pigment-specific ingestion rates and grazing impacts on phytoplankton were higher in spring than in autumn. Among the three size groups, the small-sized animals (200-500 mum) contributed more than 50% (range 38-98%) of the total copepod grazing during both cruises. The grazing impact on phytoplankton by copepods was equivalent to 11.9% (range 3.0-37.1%) of the chlorophyll-a standing stock and 53.3% (range 21.4-91.4%) of the primary production during the spring cruise. Grazing impact was equivalent to 6.3% (range 2.0-11.6%) of the chlorophyll-a standing stock and >100% (range 25.7-141.6%) of the primary production during the autumn cruise. The copepod community apparently consumed only a modest proportion of the standing stock of phytoplankton during spring and autumn blooms. They did, however, sometimes graze a significant proportion of daily primary production and hence were presumably able to limit the rate of further accumulation of phytoplankton, or even to prevent it. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The abundance of Calanus sinicus eggs, nauplii, copepodites and adults and chlorophyll a (Chl-a) concentration were studied across tidal fronts in October 2000, and May and June 2001 in the Yellow Sea, China. The aim of the study was to evaluate the role of tidal fronts in the ecology of C. sinicus. The hydrographic tidal fronts were identified by the horizontal temperature gradient in the bottom layer and the temperature profiles across the fronts. The survey results showed that the concentration of Chl-a was high in the vicinity of the fronts, particularly in spring and early summer. The abundance of C. sinicus eggs and nauplii was usually higher in the tidal fronts than in the adjacent areas. In May and June 2001, the abundance of copepodites and adults of C. sinicus peaked in the tidal front. In June 2001 and October 2000, many copepodites and adults were found in stratified region.
Resumo:
The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M-2 tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.