997 resultados para Inventory theory
Resumo:
In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory (including the Diagonal Argument, the Continuum Hypothesis and Cantor’s Theorem) and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing (completed) infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems.
Resumo:
Objectives: This article further examines the phenomenon of aggression inside barrooms by relying on the “bouncer-ethnographer” methodology. The objective is to investigate variations in aggression through time and space according to the role and routine of the target in a Montreal barroom. Thus, it provides an examination of routine activity theory at the micro level: the barroom. Methods: For a period of 258 nights of observation in a Canadian barroom, bouncers completed reports on each intervention and provided specific information regarding what happened, when and where within the venue. In addition, the bouncer-ethnographer compiled field observations and interviews with bar personnel in order to identify aggression hotspots and “rush hours” for three types of actors within barrooms: (a) bouncers, (b) barmaids and (c) patrons. Findings: Three different patterns emerged for shifting hotspots of aggression depending on the target. As the night progresses, aggressive incidents between patrons, towards barmaids and towards bouncers have specific hotspots and rush hours influenced by the specific routine of the target inside the barroom. Implications: The current findings enrich those of previous work by pointing to the relevance of not only examining the environmental characteristics of the barroom, but also the role of the target of aggression. Crime opportunities follow routine activities, even within a specific location on a micro level. Routine activity theory is thus relevant in this context, because as actors in differing roles follow differing routines, as do their patterns of victimization.
Resumo:
In this thesis T-policy is implemented to the inventory system with random lead time and also repair in the reliability of k-out-of-n system. Inventory system may be considered as the system of keeping records of the amounts of commodities in stock. Reliability is defined as the ability of an entity to perform a required function under given conditions for a given time interval. It is measured by the probability that an entity E can perform a required function under given conditions for the time interval. In this thesis considered k-out-of-n system with repair and two modes of service under T-policy. In this case first server is available always and second server is activated on elapse of T time units. The lead time is exponentially distributed with parameter and T is exponentially distributed with parameter from the epoch at which it was inactivated after completion of repair of all failed units in the previous cycle, or the moment n-k failed units accumulate. The repaired units are assumed to be as good as new. In this study , three different situations, ie; cold system, warm system and hot system. A k-out-of-n system is called cold, warm or hot according as the functional units do not fail, fail at a lower rate or fail at the same rate when system is shown as that when it is up.
Resumo:
The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.
Resumo:
This thesis is devoted to the study of some stochastic models in inventories. An inventory system is a facility at which items of materials are stocked. In order to promote smooth and efficient running of business, and to provide adequate service to the customers, an inventory materials is essential for any enterprise. When uncertainty is present, inventories are used as a protection against risk of stock out. It is advantageous to procure the item before it is needed at a lower marginal cost. Again, by bulk purchasing, the advantage of price discounts can be availed. All these contribute to the formation of inventory. Maintaining inventories is a major expenditure for any organization. For each inventory, the fundamental question is how much new stock should be ordered and when should the orders are replaced. In the present study, considered several models for single and two commodity stochastic inventory problems. The thesis discusses two models. In the first model, examined the case in which the time elapsed between two consecutive demand points are independent and identically distributed with common distribution function F(.) with mean (assumed finite) and in which demand magnitude depends only on the time elapsed since the previous demand epoch. The time between disasters has an exponential distribution with parameter . In Model II, the inter arrival time of disasters have general distribution (F.) with mean ( ) and the quantity destructed depends on the time elapsed between disasters. Demands form compound poison processes with inter arrival times of demands having mean 1/. It deals with linearly correlated bulk demand two
Commodity inventory problem, where each arrival demands a random number of items of each commodity C1 and C2, the maximum quantity demanded being a (< S1) and b(
Resumo:
The thesis report results obtained from a detailed analysis of the fluctuations of the rheological parameters viz. shear and normal stresses, simulated by means of the Stokesian Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian suspension of identical spheres in the Couette gap between two parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non-linear dynamics and chaos theory for a range of particle concentration and Couette gaps. The thesis used the tools of nonlinear dynamics and chaos theory viz. average mutual information, space-time separation plots, visual recurrence analysis, principal component analysis, false nearest-neighbor technique, correlation integrals, computation of Lyapunov exponents for a range of area fraction of particles and for different Couette gaps. The thesis observed that one stress component can be predicted using another stress component at the same area fraction. This implies a type of synchronization of one stress component with another stress component. This finding suggests us to further analysis of the synchronization of stress components with another stress component at the same or different area fraction of particles. The different model equations of stress components for different area fraction of particles hints at the possible existence a general formula for stress fluctuations with area fraction of particle as a parameter
Resumo:
The thesis presents the dynamics of a polymer chain under tension. It includes existing theories of polymer fracture, important theories of reaction rates, the rate using multidimensional transition state theory and apply it to the case of polyethylene etc. The main findings of the study are; the life time of the bond is somewhat sensitive to the potential lead to rather different answers, for a given potential a rough estimate of the rate can be obtained by a simples approximation that considers the dynamics of only the bond that breaks and neglects the coupling to neighboring bonds. Dynamics of neighboring bonds would decrease the rate, but usually not more than by one order of magnitude, for the breaking of polyethylene, quantum effects are important only for temperatures below 150K, the lifetime strongly depends on the strain and as the strain varies over a narrow range, the life varies rapidly from 105 seconds to 10_5 seconds, if we change one unit of the polymer by a foreign atom, say by one sulphure atom, in the main chain itself, by a weaker bond, the rate is found to increase by orders of magnitude etc.
Resumo:
A new approach, the multipole theory (MT) method, is presented for the computation of cutoff wavenumbers of waveguides partially filled with dielectric. The MT formulation of the eigenvalue problem of an inhomogeneous waveguide is derived. Representative computational examples, including dielectric-rod-loaded rectangular and double-ridged waveguides, are given to validate the theory, and to demonstrate the degree of its efficiency