994 resultados para Interactive theory
Resumo:
Hindi
Resumo:
Hindi
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.
Resumo:
The object of research presented here is Vessiot's theory of partial differential equations: for a given differential equation one constructs a distribution both tangential to the differential equation and contained within the contact distribution of the jet bundle. Then within it, one seeks n-dimensional subdistributions which are transversal to the base manifold, the integral distributions. These consist of integral elements, and these again shall be adapted so that they make a subdistribution which closes under the Lie-bracket. This then is called a flat Vessiot connection. Solutions to the differential equation may be regarded as integral manifolds of these distributions. In the first part of the thesis, I give a survey of the present state of the formal theory of partial differential equations: one regards differential equations as fibred submanifolds in a suitable jet bundle and considers formal integrability and the stronger notion of involutivity of differential equations for analyzing their solvability. An arbitrary system may (locally) be represented in reduced Cartan normal form. This leads to a natural description of its geometric symbol. The Vessiot distribution now can be split into the direct sum of the symbol and a horizontal complement (which is not unique). The n-dimensional subdistributions which close under the Lie bracket and are transversal to the base manifold are the sought tangential approximations for the solutions of the differential equation. It is now possible to show their existence by analyzing the structure equations. Vessiot's theory is now based on a rigorous foundation. Furthermore, the relation between Vessiot's approach and the crucial notions of the formal theory (like formal integrability and involutivity of differential equations) is clarified. The possible obstructions to involution of a differential equation are deduced explicitly. In the second part of the thesis it is shown that Vessiot's approach for the construction of the wanted distributions step by step succeeds if, and only if, the given system is involutive. Firstly, an existence theorem for integral distributions is proven. Then an existence theorem for flat Vessiot connections is shown. The differential-geometric structure of the basic systems is analyzed and simplified, as compared to those of other approaches, in particular the structure equations which are considered for the proofs of the existence theorems: here, they are a set of linear equations and an involutive system of differential equations. The definition of integral elements given here links Vessiot theory and the dual Cartan-Kähler theory of exterior systems. The analysis of the structure equations not only yields theoretical insight but also produces an algorithm which can be used to derive the coefficients of the vector fields, which span the integral distributions, explicitly. Therefore implementing the algorithm in the computer algebra system MuPAD now is possible.
Resumo:
A microscopic theory is presented for the photoacoustic effect induced in solids by x-ray absorption. The photoacoustic effect results from the thermalization of the excited Auger electrons and photoelectrons. We explain the dependence of the photoacoustic signal S on photon energy and the proportionality to the x-ray absorption coefficient in agreement with recent experiments on Cu. Results are presented for the dependence of S on photon energy, sample thickness, and the electronic structure of the absorbing solid.
Resumo:
We present a theory which permits for the first time a detailed analysis of the dependence of the absorption spectrum on atomic structure and cluster size. Thus, we determine the development of the collective excitations in small clusters and show that their broadening depends sensitively on the tomic structure, in particular at the surface. Results for Hg_n^+ clusters show that the plasmon energy is close to its jellium value in the case of spherical-like structures, but is in general between w_p/ \wurzel{3} and w_p/ \wurzel{2} for compact clusters. A particular success of our theory is the identification of the excitations contributing to the absorption peaks.
Resumo:
The static and dynamical polarizabilities of the Hg-dimer are calculated by using a Hubbard Hamiltonian to describe the electronic structure. The Hamiltonian is diagonalized exactly within a subspace of second-quantized electronic states from which only multiply ionized atomic configurations have been excluded. With this approximation we can describe the most important electronic transitions including the effect of charge fluctuations. We analyze the polarizability as a function of the intraatomic Coulomb interaction which represents the repulsion between electrons. We obtain that this interaction results in strong electronic correlations in the excited states and increases the first excitation energy of the dimer by 0.8 eV in comparison to a calculation which neglects correlations, resulting in a better agreement with the experiment.
Resumo:
To determine the size dependence of the bonding in divalent-metal clusters we use a many-electron Hamiltonian describing the interplay between van der Waals (vdW) and covalent interactions. Using a saddle-point slave-boson method and taking into account the size-dependent screening of charge fluctuations, we obtain for Hg_n a sharp transition from vdW to covalent bonding for increasing n. We show also, by solving the model Hamiltonian exactly, that for divalent metals vdW and covalent bonding coexist already in the dimers.
Resumo:
The Kr 4s-electron photoionization cross section as a function of the exciting-photon energy in the range between 30 eV and 90 eV was calculated using the configuration interaction (CI) technique in intermediate coupling. In the calculations the 4p spin-orbital interaction and corrections due to higher orders of perturbation theory (the so-called Coulomb interaction correlational decrease) were considered. Energies of Kr II states were calculated and agree with spectroscopic data within less than 10 meV. For some of the Kr II states new assignments were suggested on the basis of the largest component among the calculated CI wavefunctions.
Resumo:
Absolute cross sections for the transitions of the Kr atom into the 4s^1 and 4p^4nl states of the Kr^+ ion were measured in the 4s-electron threshold region by photon-induced fluorescence spectroscopy (PIFS). The cross sections for the transitions of the Kr atom into the 4s^1 and 4p^4nl states were also calculated, as well as the 4p^4nln'l' doubly excited states, in the frame of LS-coupling many-body technique. The cross sections of the doubly-excited atomic states were used to illustrate the pronounced contributions of the latter to the photoionization process, evident from the measurements. The comparison of theory and experiment led to conclusions about the origin of the main features observed in the experiment.
Resumo:
Using the independent particle model as our basis we present a scheme to reduce the complexity and computational effort to calculate inclusive probabilities in many-electron collision system. As an example we present an application to K - K charge transfer in collisions of 2.6 MeV Ne{^9+} on Ne. We are able to give impact parameter-dependent probabilities for many-particle states which could lead to KLL-Auger electrons after collision and we compare with experimental values.
Resumo:
In continuation of our previous work on the quintet transitions 1s2s2p^2 ^5 P-1s2s2p3d ^5 P^0, ^5 D^0, results on other n = 2 - n' = 3 quintet transitions for elements N, 0 and F are presented. Assignments have been established by comparison with Multi-Configuration Dirac-Fock calculations. High spectral resolution on beam-foil spectroscopy was essential for the identification of most of the lines. For some of the quintet lines decay curves were measured, and the lifetimes extracted were found to be in reasonable agreement with MCDF calculations.
Resumo:
During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.